Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System

表位 免疫系统 主要组织相容性复合体 生物 计算生物学 背景(考古学) 免疫原性 免疫受体 T细胞 遗传学 抗原 古生物学
作者
Nicolas Rapin,Ole Lund,Massimo Bernaschi,Filippo Castiglione
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:5 (4): e9862-e9862 被引量:769
标识
DOI:10.1371/journal.pone.0009862
摘要

We present a new approach to the study of the immune system that combines techniques of systems biology with information provided by data-driven prediction methods. To this end, we have extended an agent-based simulator of the immune response, C-ImmSim, such that it represents pathogens, as well as lymphocytes receptors, by means of their amino acid sequences and makes use of bioinformatics methods for T and B cell epitope prediction. This is a key step for the simulation of the immune response, because it determines immunogenicity. The binding of the epitope, which is the immunogenic part of an invading pathogen, together with activation and cooperation from T helper cells, is required to trigger an immune response in the affected host. To determine a pathogen's epitopes, we use existing prediction methods. In addition, we propose a novel method, which uses Miyazawa and Jernigan protein–protein potential measurements, for assessing molecular binding in the context of immune complexes. We benchmark the resulting model by simulating a classical immunization experiment that reproduces the development of immune memory. We also investigate the role of major histocompatibility complex (MHC) haplotype heterozygosity and homozygosity with respect to the influenza virus and show that there is an advantage to heterozygosity. Finally, we investigate the emergence of one or more dominating clones of lymphocytes in the situation of chronic exposure to the same immunogenic molecule and show that high affinity clones proliferate more than any other. These results show that the simulator produces dynamics that are stable and consistent with basic immunological knowledge. We believe that the combination of genomic information and simulation of the dynamics of the immune system, in one single tool, can offer new perspectives for a better understanding of the immune system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助姿姿采纳,获得10
3秒前
3秒前
kingmin应助星球日记采纳,获得10
4秒前
兴奋的定帮完成签到 ,获得积分10
5秒前
5秒前
喜羊羊发布了新的文献求助10
7秒前
8秒前
orixero应助勤恳的铃铛采纳,获得10
8秒前
8秒前
ren发布了新的文献求助10
9秒前
奋斗的舒芙蕾完成签到,获得积分10
9秒前
birdy发布了新的文献求助10
9秒前
玄策发布了新的文献求助10
10秒前
10秒前
思源应助响铃采纳,获得10
10秒前
10秒前
麦克斯韦的小妖完成签到 ,获得积分10
11秒前
赵亮发布了新的文献求助10
11秒前
12秒前
Dragon完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
陶醉代云完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
情怀应助dada采纳,获得10
13秒前
13秒前
TMOMOR发布了新的文献求助30
14秒前
14秒前
玄策发布了新的文献求助10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524932
求助须知:如何正确求助?哪些是违规求助? 3105740
关于积分的说明 9276012
捐赠科研通 2803027
什么是DOI,文献DOI怎么找? 1538292
邀请新用户注册赠送积分活动 716162
科研通“疑难数据库(出版商)”最低求助积分说明 709278