Global optimization-based inference of chemogenomic features from drug–target interactions

推论 计算机科学 适用范围 药物发现 领域(数学分析) 下部结构 药物重新定位 机器学习 人工智能 数据挖掘 化学信息学 计算生物学 药品 生物信息学 数量结构-活动关系 数学 生物 数学分析 结构工程 工程类 药理学
作者
Songpeng Zu,Ting Chen,Shao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (15): 2523-2529 被引量:25
标识
DOI:10.1093/bioinformatics/btv181
摘要

Abstract Motivation: Gaining insight into chemogenomic drug–target interactions, such as those involving the substructures of synthetic drugs and protein domains, is important in fragment-based drug discovery and drug repositioning. Previous studies evaluated the interactions locally, thereby ignoring the competitive effects of different substructures or domains, but this could lead to high false-positive estimation, calling for a computational method that presents more predictive power. Results: A statistical model, termed Global optimization-based InFerence of chemogenomic features from drug–Target interactions, or GIFT, is proposed herein to evaluate substructure-domain interactions globally such that all substructure-domain contributions to drug–target interaction are analyzed simultaneously. Combinations of different chemical substructures were included since they may function as one unit. When compared to previous methods, GIFT showed better interpretive performance, and performance for the recovery of drug–target interactions was good. Among 53 known drug–domain interactions, 81% were accurately predicted by GIFT. Eighteen of the top 100 predicted combined substructure-domain interactions had corresponding drug–target structures in the Protein Data Bank database, and 15 out of the 18 had been proved. GIFT was then implemented to predict substructure-domain interactions based on drug repositioning. For example, the anticancer activities of tazarotene, adapalene, acitretin and raloxifene were identified. In summary, GIFT is a global chemogenomic inference approach and offers fresh insight into drug–target interactions. Availability and implementation: The source codes can be found at http://bioinfo.au.tsinghua.edu.cn/software/GIFT. Contact: shaoli@mail.tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助默默采纳,获得10
刚刚
充电宝应助Peng采纳,获得10
1秒前
万能图书馆应助SC234采纳,获得10
1秒前
hongge007发布了新的文献求助10
1秒前
Luna_aaa应助盛夏如花采纳,获得10
1秒前
Owen应助喜欢猫采纳,获得10
2秒前
达尔文关注了科研通微信公众号
2秒前
2秒前
欣喜的绝山完成签到,获得积分10
2秒前
FashionBoy应助被窝哲学家采纳,获得10
2秒前
3秒前
yznfly应助Rico采纳,获得30
4秒前
WangYF2025完成签到 ,获得积分10
5秒前
5秒前
dd完成签到,获得积分20
6秒前
下次一定发布了新的文献求助10
6秒前
6秒前
小李发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
热情的远锋完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
Hello应助西瓜刀采纳,获得10
13秒前
达尔文发布了新的文献求助10
14秒前
YaoJason完成签到 ,获得积分10
15秒前
落后的彩虹完成签到 ,获得积分10
15秒前
16秒前
17秒前
佟韩发布了新的文献求助10
17秒前
gemini0615发布了新的文献求助10
17秒前
17秒前
17秒前
Dean应助Dong采纳,获得50
18秒前
隐形曼青应助TALE采纳,获得10
19秒前
zachary完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690