Global optimization-based inference of chemogenomic features from drug–target interactions

推论 计算机科学 适用范围 药物发现 领域(数学分析) 下部结构 药物重新定位 机器学习 人工智能 数据挖掘 化学信息学 计算生物学 药品 生物信息学 数量结构-活动关系 数学 生物 药理学 结构工程 工程类 数学分析
作者
Songpeng Zu,Ting Chen,Shao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (15): 2523-2529 被引量:25
标识
DOI:10.1093/bioinformatics/btv181
摘要

Abstract Motivation: Gaining insight into chemogenomic drug–target interactions, such as those involving the substructures of synthetic drugs and protein domains, is important in fragment-based drug discovery and drug repositioning. Previous studies evaluated the interactions locally, thereby ignoring the competitive effects of different substructures or domains, but this could lead to high false-positive estimation, calling for a computational method that presents more predictive power. Results: A statistical model, termed Global optimization-based InFerence of chemogenomic features from drug–Target interactions, or GIFT, is proposed herein to evaluate substructure-domain interactions globally such that all substructure-domain contributions to drug–target interaction are analyzed simultaneously. Combinations of different chemical substructures were included since they may function as one unit. When compared to previous methods, GIFT showed better interpretive performance, and performance for the recovery of drug–target interactions was good. Among 53 known drug–domain interactions, 81% were accurately predicted by GIFT. Eighteen of the top 100 predicted combined substructure-domain interactions had corresponding drug–target structures in the Protein Data Bank database, and 15 out of the 18 had been proved. GIFT was then implemented to predict substructure-domain interactions based on drug repositioning. For example, the anticancer activities of tazarotene, adapalene, acitretin and raloxifene were identified. In summary, GIFT is a global chemogenomic inference approach and offers fresh insight into drug–target interactions. Availability and implementation: The source codes can be found at http://bioinfo.au.tsinghua.edu.cn/software/GIFT. Contact: shaoli@mail.tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenbin完成签到,获得积分10
刚刚
华仔应助springovo采纳,获得10
1秒前
英俊的铭应助enli采纳,获得10
2秒前
junjie完成签到,获得积分10
2秒前
在一完成签到,获得积分10
3秒前
WQ完成签到,获得积分10
3秒前
4秒前
4秒前
星辰大海应助河马采纳,获得10
4秒前
自转无风完成签到,获得积分10
4秒前
王奔奔发布了新的文献求助10
4秒前
Hello应助123456采纳,获得10
4秒前
小丸子完成签到,获得积分10
5秒前
hyperthermal1完成签到,获得积分10
6秒前
俊逸的石头完成签到,获得积分10
7秒前
研友_LNBW5L完成签到,获得积分10
7秒前
7秒前
崔昕雨发布了新的文献求助10
8秒前
Owen应助祝志泽采纳,获得10
8秒前
kunkun完成签到,获得积分10
9秒前
香蕉觅云应助库里晚安采纳,获得10
9秒前
zzzzz完成签到,获得积分10
10秒前
10秒前
10秒前
zzyyy完成签到 ,获得积分10
10秒前
英俊延恶完成签到,获得积分10
11秒前
11秒前
可爱的函函应助Nanocapsule采纳,获得10
12秒前
gyhmm完成签到,获得积分10
12秒前
12秒前
13秒前
懵懂的土豆完成签到,获得积分10
13秒前
研友_LNBW5L发布了新的文献求助10
13秒前
Akim应助chen.采纳,获得10
14秒前
CodeCraft应助王金娥采纳,获得10
14秒前
哔哔应助科研通管家采纳,获得30
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
xjcy应助科研通管家采纳,获得10
15秒前
怦怦应助科研通管家采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257518
求助须知:如何正确求助?哪些是违规求助? 2899479
关于积分的说明 8305791
捐赠科研通 2568680
什么是DOI,文献DOI怎么找? 1395251
科研通“疑难数据库(出版商)”最低求助积分说明 652969
邀请新用户注册赠送积分活动 630767