亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global optimization-based inference of chemogenomic features from drug–target interactions

推论 计算机科学 适用范围 药物发现 领域(数学分析) 下部结构 药物重新定位 机器学习 人工智能 数据挖掘 化学信息学 计算生物学 药品 生物信息学 数量结构-活动关系 数学 生物 数学分析 结构工程 工程类 药理学
作者
Songpeng Zu,Ting Chen,Shao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (15): 2523-2529 被引量:25
标识
DOI:10.1093/bioinformatics/btv181
摘要

Abstract Motivation: Gaining insight into chemogenomic drug–target interactions, such as those involving the substructures of synthetic drugs and protein domains, is important in fragment-based drug discovery and drug repositioning. Previous studies evaluated the interactions locally, thereby ignoring the competitive effects of different substructures or domains, but this could lead to high false-positive estimation, calling for a computational method that presents more predictive power. Results: A statistical model, termed Global optimization-based InFerence of chemogenomic features from drug–Target interactions, or GIFT, is proposed herein to evaluate substructure-domain interactions globally such that all substructure-domain contributions to drug–target interaction are analyzed simultaneously. Combinations of different chemical substructures were included since they may function as one unit. When compared to previous methods, GIFT showed better interpretive performance, and performance for the recovery of drug–target interactions was good. Among 53 known drug–domain interactions, 81% were accurately predicted by GIFT. Eighteen of the top 100 predicted combined substructure-domain interactions had corresponding drug–target structures in the Protein Data Bank database, and 15 out of the 18 had been proved. GIFT was then implemented to predict substructure-domain interactions based on drug repositioning. For example, the anticancer activities of tazarotene, adapalene, acitretin and raloxifene were identified. In summary, GIFT is a global chemogenomic inference approach and offers fresh insight into drug–target interactions. Availability and implementation: The source codes can be found at http://bioinfo.au.tsinghua.edu.cn/software/GIFT. Contact: shaoli@mail.tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Penny发布了新的文献求助10
1秒前
andrele发布了新的文献求助50
5秒前
Fortune发布了新的文献求助10
5秒前
颜安完成签到,获得积分20
18秒前
张张完成签到 ,获得积分10
20秒前
23秒前
Fortune完成签到,获得积分10
27秒前
Vincent发布了新的文献求助10
28秒前
爆米花应助lzmcsp采纳,获得10
28秒前
36秒前
BowieHuang应助科研通管家采纳,获得10
36秒前
李健应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
汉堡包应助科研通管家采纳,获得10
36秒前
Vincent完成签到,获得积分10
42秒前
蓝色牛马完成签到,获得积分10
48秒前
xuzb发布了新的文献求助10
52秒前
搜集达人应助蓝色牛马采纳,获得10
54秒前
1分钟前
lzmcsp发布了新的文献求助10
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
lzmcsp完成签到,获得积分10
1分钟前
andrele发布了新的文献求助200
1分钟前
1分钟前
颜安发布了新的文献求助10
1分钟前
蓝色牛马发布了新的文献求助10
1分钟前
坦率的诗蕾完成签到 ,获得积分10
1分钟前
_ban完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
在水一方应助Fiy采纳,获得10
2分钟前
2分钟前
2分钟前
Fiy发布了新的文献求助10
2分钟前
wmz完成签到 ,获得积分10
2分钟前
3分钟前
lyw发布了新的文献求助10
3分钟前
andrele发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507