已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global optimization-based inference of chemogenomic features from drug–target interactions

推论 计算机科学 适用范围 药物发现 领域(数学分析) 下部结构 药物重新定位 机器学习 人工智能 数据挖掘 化学信息学 计算生物学 药品 生物信息学 数量结构-活动关系 数学 生物 数学分析 结构工程 工程类 药理学
作者
Songpeng Zu,Ting Chen,Shao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:31 (15): 2523-2529 被引量:25
标识
DOI:10.1093/bioinformatics/btv181
摘要

Abstract Motivation: Gaining insight into chemogenomic drug–target interactions, such as those involving the substructures of synthetic drugs and protein domains, is important in fragment-based drug discovery and drug repositioning. Previous studies evaluated the interactions locally, thereby ignoring the competitive effects of different substructures or domains, but this could lead to high false-positive estimation, calling for a computational method that presents more predictive power. Results: A statistical model, termed Global optimization-based InFerence of chemogenomic features from drug–Target interactions, or GIFT, is proposed herein to evaluate substructure-domain interactions globally such that all substructure-domain contributions to drug–target interaction are analyzed simultaneously. Combinations of different chemical substructures were included since they may function as one unit. When compared to previous methods, GIFT showed better interpretive performance, and performance for the recovery of drug–target interactions was good. Among 53 known drug–domain interactions, 81% were accurately predicted by GIFT. Eighteen of the top 100 predicted combined substructure-domain interactions had corresponding drug–target structures in the Protein Data Bank database, and 15 out of the 18 had been proved. GIFT was then implemented to predict substructure-domain interactions based on drug repositioning. For example, the anticancer activities of tazarotene, adapalene, acitretin and raloxifene were identified. In summary, GIFT is a global chemogenomic inference approach and offers fresh insight into drug–target interactions. Availability and implementation: The source codes can be found at http://bioinfo.au.tsinghua.edu.cn/software/GIFT. Contact: shaoli@mail.tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MAO完成签到,获得积分10
1秒前
Rye完成签到,获得积分10
1秒前
拼搏向上发布了新的文献求助30
4秒前
聪明夏波发布了新的文献求助10
5秒前
6秒前
优美凡白发布了新的文献求助10
6秒前
皮克阿普完成签到,获得积分10
7秒前
7秒前
皮克阿普发布了新的文献求助10
10秒前
辛勤的喉完成签到 ,获得积分10
10秒前
sh131完成签到,获得积分10
11秒前
小蓝发布了新的文献求助10
12秒前
12秒前
lld发布了新的文献求助10
13秒前
喵了个咪完成签到 ,获得积分10
14秒前
Akim应助lzx采纳,获得10
15秒前
Lucas应助晴子采纳,获得10
19秒前
nakl完成签到,获得积分10
20秒前
20秒前
所所应助花生米米米采纳,获得30
21秒前
ww完成签到 ,获得积分10
24秒前
范ER完成签到 ,获得积分10
26秒前
Lucas应助聪明夏波采纳,获得10
27秒前
乔滴滴完成签到 ,获得积分10
27秒前
乔滴滴完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
Zeeki完成签到 ,获得积分10
30秒前
懒得起名字完成签到 ,获得积分10
32秒前
34秒前
bkagyin应助优美凡白采纳,获得10
34秒前
晚意完成签到 ,获得积分10
34秒前
小巧的书桃完成签到,获得积分20
35秒前
熬夜波比给Nature的求助进行了留言
38秒前
39秒前
炙热一凤发布了新的文献求助10
39秒前
SciGPT应助曙丽盼采纳,获得10
39秒前
nojego完成签到,获得积分10
40秒前
41秒前
怡然剑成完成签到 ,获得积分10
41秒前
ffff完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855366
关于积分的说明 15106647
捐赠科研通 4822329
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535540
关于科研通互助平台的介绍 1493816