长时程增强
突触可塑性
奶油
神经科学
变质塑性
ATF4
生物
LTP诱导
突触标度
细胞生物学
化学
兴奋性突触后电位
转录因子
抑制性突触后电位
生物化学
未折叠蛋白反应
受体
内质网
基因
作者
Mauro Costa‐Mattioli,Delphine Gobert,Heather P. Harding,Barbara Herdy,Mounia Azzi,Martín A. Bruno,Michael Bidinosti,Cyrinne Ben Mamou,Edwige Marcinkiewicz,Madoka Yoshida,Hiroaki Imataka,A. Claudio Cuello,Nabil G. Seidah,Wayne S. Sossin,Jean‐Claude Lacaille,David Ron,Karim Nader,Nahum Sonenberg
出处
期刊:Nature
[Springer Nature]
日期:2005-08-01
卷期号:436 (7054): 1166-1170
被引量:386
摘要
Studies on various forms of synaptic plasticity have shown a link between messenger RNA translation, learning and memory. Like memory, synaptic plasticity includes an early phase that depends on modification of pre-existing proteins, and a late phase that requires transcription and synthesis of new proteins1,2. Activation of postsynaptic targets seems to trigger the transcription of plasticity-related genes. The new mRNAs are either translated in the soma or transported to synapses before translation. GCN2, a key protein kinase, regulates the initiation of translation. Here we report a unique feature of hippocampal slices from GCN2-/- mice: in CA1, a single 100-Hz train induces a strong and sustained long-term potentiation (late LTP or L-LTP), which is dependent on transcription and translation. In contrast, stimulation that elicits L-LTP in wild-type slices, such as four 100-Hz trains or forskolin, fails to evoke L-LTP in GCN2-/- slices. This aberrant synaptic plasticity is mirrored in the behaviour of GCN2-/- mice in the Morris water maze: after weak training, their spatial memory is enhanced, but it is impaired after more intense training. Activated GCN2 stimulates mRNA translation of ATF4, an antagonist of cyclic-AMP-response-element-binding protein (CREB). Thus, in the hippocampus of GCN2-/- mice, the expression of ATF4 is reduced and CREB activity is increased. Our study provides genetic, physiological, behavioural and molecular evidence that GCN2 regulates synaptic plasticity, as well as learning and memory, through modulation of the ATF4/CREB pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI