From Ultrananocrystalline Diamond to Single Crystal Diamond Growth in Hot Filament and Microwave Plasma-Enhanced CVD Reactors: a Unified Model for Growth Rates and Grain Sizes

钻石 化学气相沉积 悬空债券 微晶 材料科学 金刚石材料性能 晶体生长 Crystal(编程语言) 增长率 纳米技术 化学 结晶学 复合材料 光电子学 冶金 几何学 数学 计算机科学 程序设计语言
作者
Paul May,Yu. A. Mankelevich
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:112 (32): 12432-12441 被引量:116
标识
DOI:10.1021/jp803735a
摘要

CVD Diamond can now be deposited either in the form of single crystal homoepitaxial layers, or as polycrystalline films with crystal sizes ranging from mm, μm or nm, and with a variety of growth rates up to 100s of μm h−1 depending upon deposition conditions. We previously developed a model which provides a coherent and unified picture that accounts for the observed growth rate, morphology, and crystal sizes, of all of these types of diamond. The model is based on competition between H atoms, CH3 radicals and other C1 radical species reacting with dangling bonds on the diamond surface. The approach leads to formulas for the diamond growth rate G via mono and biradical dimer sites and for the average crystallite size , that use as parameters, the substrate temperature and the concentrations of H and CHx (0 ≤ x ≤ 3) near the growing diamond surface. We recently added a correction factor to the equation for and we now test the predictions of this new equation for diamond crystallite sizes ranging from 10 nm (ultrananocrystalline diamond) to several mm (for single crystal diamond). We find that our model predicts the growth rates of all the forms of diamond to within a factor of 2, and predicts crystal sizes for the growth from CH3 that are consistent with those seen experimentally. We deduce that growth of diamond is a sliding scale, with different types of diamond arising from a smoothly changing ratio of atomic H to hydrocarbon radical concentrations [H]:∑CHx] at the growing surface. The different growth conditions, gas mixtures, temperatures and pressures reported in the literature for diamond growth, simply serve to fix the value of this ratio, and with it, the resulting film morphology and growth rate. In general, for conditions of high [H] at the surface, diamond growth is predominantly from CH3 addition to monoradical sites, leading to large crystals (or even single crystal growth). With decreasing [H]/[CH3], a competing growth channel emerges whereby CH3 adds to biradical sites and the average crystallite size is reduced simultaneously to μm or even nm for very low [H]/[CH3] ratio. In a third growth channel involving atomic C adding to either mono or biradical sites, the spare 'dangling bond' can promote renucleation events and increase possibilities for cross-linking, leading to even smaller nm-sized crystallites. This channel can be dominant in high temperature reactors (e.g., MW plasma-enhanced CVD in 1%CH4/(0−2%)H2/Ar mixtures) where high hydrogen dissociation degree shifts the population distribution in CHx group in favor of C atoms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助bo采纳,获得10
1秒前
虚拟的若完成签到,获得积分10
1秒前
香蕉觅云应助焱鑫采纳,获得10
1秒前
1秒前
1秒前
lancer完成签到,获得积分10
1秒前
Lvhao完成签到,获得积分10
2秒前
3秒前
3秒前
hy完成签到 ,获得积分10
3秒前
皇家咖啡完成签到 ,获得积分10
5秒前
故事细腻发布了新的文献求助10
5秒前
5秒前
好运来发布了新的文献求助10
6秒前
海风发布了新的文献求助10
7秒前
7秒前
华仔应助简单的琦采纳,获得10
7秒前
哈哈哈发布了新的文献求助10
7秒前
喜悦的鬼神完成签到 ,获得积分10
7秒前
8秒前
郜连虎发布了新的文献求助10
8秒前
zhou发布了新的文献求助10
8秒前
sam关注了科研通微信公众号
8秒前
10秒前
开心的大娘完成签到,获得积分10
11秒前
zzz发布了新的文献求助10
11秒前
赘婿应助冷傲海蓝采纳,获得10
11秒前
斯文怀寒发布了新的文献求助10
11秒前
天天快乐应助单身的钧采纳,获得10
12秒前
12秒前
12秒前
12秒前
华仔应助你的葳采纳,获得10
12秒前
14秒前
catherine完成签到,获得积分10
14秒前
我想当太空人完成签到,获得积分10
14秒前
15秒前
15秒前
易落完成签到,获得积分10
15秒前
rick发布了新的文献求助10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610911
求助须知:如何正确求助?哪些是违规求助? 4695350
关于积分的说明 14886541
捐赠科研通 4723667
什么是DOI,文献DOI怎么找? 2545322
邀请新用户注册赠送积分活动 1510085
关于科研通互助平台的介绍 1473121