Investigation of Temperature Distribution and Heat Transfer in Fluidized Bed Using a Combined CFD-DEM Model

计算流体力学 流态化 传热 机械 流化床 传热系数 热力学 CFD-DEM公司 材料科学 入口 机械工程 物理 工程类
作者
Sumol Sae-Heng Pisitsungkakarn,Thanit Swasdisevi,Mana Amornkitbamrung
出处
期刊:Drying Technology [Informa]
卷期号:29 (6): 697-708 被引量:29
标识
DOI:10.1080/07373937.2010.528107
摘要

Fluidized beds are widely used in many industries because they are effective for both mixing and drying. The distinct element method (DEM) has recently received more attention for investigating the phenomena of multiphase flow because the technique is effective in gathering detailed information on complex phenomena without physically disturbing the flows. However, most studies have focused on the aerodynamics of the particles. In this study, a combined computational fluid dynamics (CFD)-DEM model, which allows prediction of gas and particle temperature profiles and heat transfer coefficients in a two-dimensional fluidized bed, was developed. The predicted results were compared with the experimental results at the superficial gas velocities of 2.04, 2.22, and 2.41 m/s and at the controlled inlet temperature of 343 K. Based on the comparison between the predicted and experimental results, it was found that the developed model performed adequately in predicting the gas temperature profiles, and the predicted particle temperature profiles were higher than the experimental data. The predicted heat transfer coefficient was slightly higher than the experimental data. However, the predicted and experimental results had a similar trend in which the heat transfer coefficient increased as a function of an increase in superficial gas velocity. In addition, the minimum fluidization velocity predicted by the developed model agreed well with the experimental data. Such predictions can provide essential information on temperature and heat transfer coefficients inside the fluidized bed for design and scale-up.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆dou发布了新的文献求助10
2秒前
旭日东升完成签到 ,获得积分10
3秒前
yyyyou完成签到,获得积分10
4秒前
科研通AI5应助xlj采纳,获得10
6秒前
Jenny应助WZ0904采纳,获得10
6秒前
弘一完成签到,获得积分10
6秒前
郑zhenglanyou完成签到 ,获得积分10
7秒前
9秒前
忧子忘完成签到,获得积分10
9秒前
10秒前
foreverchoi完成签到,获得积分10
10秒前
HH完成签到,获得积分20
10秒前
11秒前
whm完成签到,获得积分10
11秒前
13秒前
邬傥完成签到,获得积分10
14秒前
tomato应助执着采纳,获得20
15秒前
大方嵩发布了新的文献求助10
15秒前
梓ccc完成签到,获得积分10
15秒前
15秒前
求助发布了新的文献求助10
16秒前
风雨1210发布了新的文献求助10
16秒前
16秒前
17秒前
小梁要加油完成签到,获得积分20
17秒前
Alpha发布了新的文献求助10
18秒前
刘鹏宇发布了新的文献求助10
19秒前
zhangscience完成签到,获得积分10
19秒前
可爱的函函应助若狂采纳,获得10
20秒前
小蘑菇应助阿美采纳,获得30
20秒前
科研通AI2S应助机智小虾米采纳,获得10
21秒前
充电宝应助Xx.采纳,获得10
22秒前
zhangscience发布了新的文献求助10
23秒前
深情安青应助大方嵩采纳,获得10
24秒前
英俊的铭应助大方嵩采纳,获得10
24秒前
李还好完成签到,获得积分10
25秒前
满意的柏柳完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808