Quality tracing of peanuts using an array of metal-oxide based gas sensors combined with chemometrics methods

化学计量学 偏最小二乘回归 支持向量机 过氧化值 线性判别分析 模式识别(心理学) 化学 数学 人工智能 食品科学 统计 色谱法 计算机科学
作者
Min Xu,Linshuang Ye,Jun Wang,Zhenbo Wei,Shaoming Cheng
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:128: 98-104 被引量:24
标识
DOI:10.1016/j.postharvbio.2017.02.008
摘要

Quality tracing models were set up for both unshelled peanuts and peanut kernels by applying an array of 18 metal-oxide (MOX) based gas sensors. Acid value, peroxide value and content of crude fat of the peanuts at different storage times were measured by traditional methods as a reference. Classification results for both unshelled peanuts and peanut kernels at different storage times based on Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were acceptable Storage time, acid value, peroxide value and content of crude fat of peanuts were predicted by Partial Least Squares Regression (PLSR) and SVM on the basis of different normalized datasets. Original datasets, datasets normalized in [0,1] and in [−1,1] were considered. PLSR and SVM provided better prediction results when normalized in [0,1] and [−1,1], respectively. Correlations between adulterated levels (stale peanuts blended in fresh peanuts at levels of 0%, 25%, 50%, 75% and 100%) and sensor signals were researched by PLSR and SVM. It was found that the sensor signals and adulterated levels exhibited good correlation (R2 > 0.801 for training and testing sets by both methods). Meanwhile, The R2 for training and testing sets were 0.941 and 0.896 by applying SVM, respectively, and both of them were correspondingly higher than the R2 for training and testing sets by PLSR (training: R2 = 0.812; testing: R2 = 0.802). The research indicates that the 18 MOX based gas sensors combined with appropriate chemometrics methods can be used as a non-destructive method in detecting peanut quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
psg完成签到,获得积分10
1秒前
cc发布了新的文献求助10
1秒前
2秒前
冯万强发布了新的文献求助10
2秒前
returno_0发布了新的文献求助10
2秒前
3秒前
CipherSage应助称心香薇采纳,获得10
3秒前
香草吧噗发布了新的文献求助10
4秒前
4秒前
5秒前
CYQ发布了新的文献求助10
6秒前
尛哲先森完成签到 ,获得积分10
6秒前
7秒前
自然的听南完成签到 ,获得积分10
7秒前
7秒前
8秒前
大个应助yuan采纳,获得20
8秒前
9秒前
9秒前
悉达多完成签到,获得积分10
10秒前
李健的粉丝团团长应助xcf采纳,获得10
11秒前
爆米花应助激昂的飞松采纳,获得10
11秒前
11秒前
安诺发布了新的文献求助10
12秒前
陈圈圈发布了新的文献求助10
13秒前
娇娇完成签到,获得积分20
14秒前
开朗楼房发布了新的文献求助10
15秒前
谛听不听完成签到 ,获得积分10
15秒前
魏煊完成签到,获得积分20
15秒前
汉堡包应助危机的尔琴采纳,获得10
15秒前
慕青应助黑桃3采纳,获得10
16秒前
16秒前
科研通AI6应助蓝莓小蛋糕采纳,获得10
16秒前
cococola发布了新的文献求助30
16秒前
sxq发布了新的文献求助10
18秒前
安诺完成签到,获得积分10
19秒前
魏煊发布了新的文献求助10
19秒前
li发布了新的文献求助10
19秒前
zhou_发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487