Quality tracing of peanuts using an array of metal-oxide based gas sensors combined with chemometrics methods

化学计量学 偏最小二乘回归 支持向量机 过氧化值 线性判别分析 模式识别(心理学) 化学 数学 人工智能 食品科学 统计 色谱法 计算机科学
作者
Min Xu,Linshuang Ye,Jun Wang,Zhenbo Wei,Shaoming Cheng
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:128: 98-104 被引量:24
标识
DOI:10.1016/j.postharvbio.2017.02.008
摘要

Quality tracing models were set up for both unshelled peanuts and peanut kernels by applying an array of 18 metal-oxide (MOX) based gas sensors. Acid value, peroxide value and content of crude fat of the peanuts at different storage times were measured by traditional methods as a reference. Classification results for both unshelled peanuts and peanut kernels at different storage times based on Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were acceptable Storage time, acid value, peroxide value and content of crude fat of peanuts were predicted by Partial Least Squares Regression (PLSR) and SVM on the basis of different normalized datasets. Original datasets, datasets normalized in [0,1] and in [−1,1] were considered. PLSR and SVM provided better prediction results when normalized in [0,1] and [−1,1], respectively. Correlations between adulterated levels (stale peanuts blended in fresh peanuts at levels of 0%, 25%, 50%, 75% and 100%) and sensor signals were researched by PLSR and SVM. It was found that the sensor signals and adulterated levels exhibited good correlation (R2 > 0.801 for training and testing sets by both methods). Meanwhile, The R2 for training and testing sets were 0.941 and 0.896 by applying SVM, respectively, and both of them were correspondingly higher than the R2 for training and testing sets by PLSR (training: R2 = 0.812; testing: R2 = 0.802). The research indicates that the 18 MOX based gas sensors combined with appropriate chemometrics methods can be used as a non-destructive method in detecting peanut quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NPC-CBI完成签到,获得积分10
1秒前
2秒前
gaozige发布了新的文献求助10
2秒前
2秒前
Deyong发布了新的文献求助10
2秒前
zjy完成签到,获得积分10
3秒前
3秒前
善学以致用应助认真擎汉采纳,获得20
3秒前
4秒前
武雨寒完成签到,获得积分20
4秒前
4秒前
whoKnows应助露西亚采纳,获得20
5秒前
5秒前
njhuxs发布了新的文献求助10
5秒前
曲聋五发布了新的文献求助10
5秒前
Orange应助番茄薯片真好吃采纳,获得10
5秒前
paulmichael发布了新的文献求助10
6秒前
viang完成签到,获得积分10
6秒前
7秒前
不会取名完成签到,获得积分20
7秒前
武雨寒发布了新的文献求助10
7秒前
7秒前
开放的芮发布了新的文献求助10
8秒前
顾矜应助zjy采纳,获得10
8秒前
Haki发布了新的文献求助10
8秒前
9秒前
scainiao发布了新的文献求助10
9秒前
涛1完成签到 ,获得积分10
9秒前
彩虹糖发布了新的文献求助10
10秒前
collin发布了新的文献求助10
10秒前
10秒前
盐植物发布了新的文献求助10
10秒前
bsf123完成签到,获得积分10
11秒前
mine发布了新的文献求助10
11秒前
11秒前
Sunny完成签到 ,获得积分10
13秒前
Wuyiqin完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933582
求助须知:如何正确求助?哪些是违规求助? 4201685
关于积分的说明 13054603
捐赠科研通 3975759
什么是DOI,文献DOI怎么找? 2178584
邀请新用户注册赠送积分活动 1194854
关于科研通互助平台的介绍 1106269