Quality tracing of peanuts using an array of metal-oxide based gas sensors combined with chemometrics methods

化学计量学 偏最小二乘回归 支持向量机 过氧化值 线性判别分析 模式识别(心理学) 化学 数学 人工智能 食品科学 统计 色谱法 计算机科学
作者
Min Xu,Linshuang Ye,Jun Wang,Zhenbo Wei,Shaoming Cheng
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:128: 98-104 被引量:24
标识
DOI:10.1016/j.postharvbio.2017.02.008
摘要

Quality tracing models were set up for both unshelled peanuts and peanut kernels by applying an array of 18 metal-oxide (MOX) based gas sensors. Acid value, peroxide value and content of crude fat of the peanuts at different storage times were measured by traditional methods as a reference. Classification results for both unshelled peanuts and peanut kernels at different storage times based on Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were acceptable Storage time, acid value, peroxide value and content of crude fat of peanuts were predicted by Partial Least Squares Regression (PLSR) and SVM on the basis of different normalized datasets. Original datasets, datasets normalized in [0,1] and in [−1,1] were considered. PLSR and SVM provided better prediction results when normalized in [0,1] and [−1,1], respectively. Correlations between adulterated levels (stale peanuts blended in fresh peanuts at levels of 0%, 25%, 50%, 75% and 100%) and sensor signals were researched by PLSR and SVM. It was found that the sensor signals and adulterated levels exhibited good correlation (R2 > 0.801 for training and testing sets by both methods). Meanwhile, The R2 for training and testing sets were 0.941 and 0.896 by applying SVM, respectively, and both of them were correspondingly higher than the R2 for training and testing sets by PLSR (training: R2 = 0.812; testing: R2 = 0.802). The research indicates that the 18 MOX based gas sensors combined with appropriate chemometrics methods can be used as a non-destructive method in detecting peanut quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
124332发布了新的文献求助10
2秒前
积极的无色完成签到 ,获得积分10
3秒前
3秒前
可爱的函函应助gliterr采纳,获得10
3秒前
3秒前
竹筏过海应助优美初蓝采纳,获得30
3秒前
留胡子的思真完成签到,获得积分10
4秒前
北极星完成签到 ,获得积分10
4秒前
小蘑菇应助赵三岁采纳,获得10
6秒前
大个应助不挂科的人采纳,获得10
6秒前
7秒前
英俊的铭应助2y采纳,获得10
7秒前
guanguan发布了新的文献求助30
8秒前
8秒前
FashionBoy应助小肥羊采纳,获得10
9秒前
9秒前
11秒前
情怀应助VISION采纳,获得10
11秒前
11秒前
justsayit完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
123发布了新的文献求助10
12秒前
小粉丝完成签到,获得积分10
13秒前
默默寒凡发布了新的文献求助50
13秒前
15秒前
16秒前
小粉丝发布了新的文献求助10
16秒前
gliterr发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
烟花应助baize采纳,获得10
18秒前
18秒前
Layen完成签到,获得积分20
19秒前
ding应助guanguan采纳,获得10
20秒前
charliechen完成签到 ,获得积分10
21秒前
2y发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302738
求助须知:如何正确求助?哪些是违规求助? 2937103
关于积分的说明 8480454
捐赠科研通 2610996
什么是DOI,文献DOI怎么找? 1425486
科研通“疑难数据库(出版商)”最低求助积分说明 662367
邀请新用户注册赠送积分活动 646746