Quality tracing of peanuts using an array of metal-oxide based gas sensors combined with chemometrics methods

化学计量学 偏最小二乘回归 支持向量机 过氧化值 线性判别分析 模式识别(心理学) 化学 数学 人工智能 食品科学 统计 色谱法 计算机科学
作者
Min Xu,Linshuang Ye,Jun Wang,Zhenbo Wei,Shaoming Cheng
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:128: 98-104 被引量:24
标识
DOI:10.1016/j.postharvbio.2017.02.008
摘要

Quality tracing models were set up for both unshelled peanuts and peanut kernels by applying an array of 18 metal-oxide (MOX) based gas sensors. Acid value, peroxide value and content of crude fat of the peanuts at different storage times were measured by traditional methods as a reference. Classification results for both unshelled peanuts and peanut kernels at different storage times based on Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were acceptable Storage time, acid value, peroxide value and content of crude fat of peanuts were predicted by Partial Least Squares Regression (PLSR) and SVM on the basis of different normalized datasets. Original datasets, datasets normalized in [0,1] and in [−1,1] were considered. PLSR and SVM provided better prediction results when normalized in [0,1] and [−1,1], respectively. Correlations between adulterated levels (stale peanuts blended in fresh peanuts at levels of 0%, 25%, 50%, 75% and 100%) and sensor signals were researched by PLSR and SVM. It was found that the sensor signals and adulterated levels exhibited good correlation (R2 > 0.801 for training and testing sets by both methods). Meanwhile, The R2 for training and testing sets were 0.941 and 0.896 by applying SVM, respectively, and both of them were correspondingly higher than the R2 for training and testing sets by PLSR (training: R2 = 0.812; testing: R2 = 0.802). The research indicates that the 18 MOX based gas sensors combined with appropriate chemometrics methods can be used as a non-destructive method in detecting peanut quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞笑煎蛋完成签到 ,获得积分10
刚刚
lu发布了新的文献求助10
刚刚
1秒前
Mr鹿完成签到,获得积分10
1秒前
亮亮完成签到,获得积分10
1秒前
2秒前
梨炒栗子发布了新的文献求助10
2秒前
虚幻的茗完成签到,获得积分20
3秒前
zz完成签到 ,获得积分10
3秒前
微眠发布了新的文献求助10
3秒前
研友_Lmb15n完成签到,获得积分10
3秒前
4秒前
4秒前
yy完成签到,获得积分10
5秒前
nixiaozhi完成签到,获得积分10
6秒前
6秒前
FashionBoy应助Mr鹿采纳,获得10
6秒前
松果发布了新的文献求助10
7秒前
本本完成签到 ,获得积分10
7秒前
firmalter发布了新的文献求助10
7秒前
小火车完成签到,获得积分10
8秒前
8秒前
开朗孤兰发布了新的文献求助50
8秒前
浮游应助sincoco采纳,获得10
8秒前
GT发布了新的文献求助200
9秒前
科研通AI2S应助Cc采纳,获得10
10秒前
10秒前
Apple发布了新的文献求助10
10秒前
10秒前
g905910061完成签到,获得积分10
10秒前
11秒前
yatou327完成签到,获得积分10
11秒前
Amz发布了新的文献求助10
11秒前
香蕉觅云应助研了个研采纳,获得10
12秒前
李静怡发布了新的文献求助10
12秒前
12秒前
大模型应助Dylan采纳,获得10
14秒前
奥斯卡完成签到,获得积分0
15秒前
15秒前
英姑应助缥缈静珊采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264584
求助须知:如何正确求助?哪些是违规求助? 4424752
关于积分的说明 13774475
捐赠科研通 4299932
什么是DOI,文献DOI怎么找? 2359502
邀请新用户注册赠送积分活动 1355612
关于科研通互助平台的介绍 1316870