化学
环加成
炔烃
双金属片
电子顺磁共振
铜
叠氮化物
价(化学)
循环伏安法
离域电子
药物化学
光化学
催化作用
立体化学
结晶学
电化学
有机化学
物理化学
物理
核磁共振
电极
作者
Micah S. Ziegler,K. V. Lakshmi,T. Don Tilley
摘要
A discrete, dicopper μ-alkynyl complex, [Cu2(μ-η1:η1-C≡C(C6H4)CH3)DPFN]NTf2 (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine; NTf2– = N(SO2CF3)2–), reacts with p-tolylazide to yield a dicopper complex with a symmetrically bridging 1,2,3-triazolide, [Cu2(μ-η1:η1-(1,4-bis(4-tolyl)-1,2,3-triazolide))DPFN]NTf2. This transformation exhibits bimolecular reaction kinetics and represents a key step in a proposed, bimetallic mechanism for copper-catalyzed azide–alkyne cycloaddition (CuAAC). The μ-alkynyl and μ-triazolide complexes undergo reversible redox events (by cyclic voltammetry), suggesting that a cycloaddition pathway involving mixed-valence dicopper species might also be possible. Synthesis and characterization of the mixed-valence μ-alkynyl dicopper complex, [Cu2(μ-η1:η1-C≡C(C6H4)CH3)DPFN](NTf2)2, revealed an electronic structure with an unexpected partially delocalized spin, as evidenced by electron paramagnetic resonance spectroscopy. Studies of the mixed-valence μ-alkynyl complex's reactivity suggest that a mixed-valence pathway is less likely than one involving intermediates with only copper(I).
科研通智能强力驱动
Strongly Powered by AbleSci AI