A hierarchical method for human concurrent activity recognition using miniature inertial sensors

活动识别 计算机科学 人工智能 人工神经网络 日常生活活动 惯性测量装置 康复 模式识别(心理学) 心理学 精神科 神经科学
作者
Ye Chen,Zhelong Wang
出处
期刊:Sensor Review [Emerald Publishing Limited]
卷期号:37 (1): 101-109 被引量:12
标识
DOI:10.1108/sr-05-2016-0085
摘要

Purpose Existing studies on human activity recognition using inertial sensors mainly discuss single activities. However, human activities are rather concurrent. A person could be walking while brushing their teeth or lying while making a call. The purpose of this paper is to explore an effective way to recognize concurrent activities. Design/methodology/approach Concurrent activities usually involve behaviors from different parts of the body, which are mainly dominated by the lower limbs and upper body. For this reason, a hierarchical method based on artificial neural networks (ANNs) is proposed to classify them. At the lower level, the state of the lower limbs to which a concurrent activity belongs is firstly recognized by means of one ANN using simple features. Then, the upper-level systems further distinguish between the upper limb movements and infer specific concurrent activity using features processed by the principle component analysis. Findings An experiment is conducted to collect realistic data from five sensor nodes placed on subjects’ wrist, arm, thigh, ankle and chest. Experimental results indicate that the proposed hierarchical method can distinguish between 14 concurrent activities with a high classification rate of 92.6 per cent, which significantly outperforms the single-level recognition method. Practical implications In the future, the research may play an important role in many ways such as daily behavior monitoring, smart assisted living, postoperative rehabilitation and eldercare support. Originality/value To provide more accurate information on people’s behaviors, human concurrent activities are discussed and effectively recognized by using a hierarchical method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ZhihaoYang完成签到,获得积分10
1秒前
qiuyu完成签到,获得积分10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
zyyyy完成签到,获得积分10
1秒前
xuxiaoyan完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
yjy完成签到,获得积分10
2秒前
秋子发布了新的文献求助10
2秒前
2秒前
偷懒猫完成签到,获得积分20
2秒前
2秒前
Faine完成签到 ,获得积分10
2秒前
小诗完成签到,获得积分10
3秒前
奋斗的幼荷完成签到,获得积分10
4秒前
白白发布了新的文献求助10
4秒前
4秒前
活力饼干关注了科研通微信公众号
5秒前
hi完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助幽默的凡采纳,获得10
6秒前
6秒前
球球完成签到,获得积分10
6秒前
娜是一阵风完成签到 ,获得积分10
6秒前
6秒前
獭祭鱼完成签到,获得积分10
7秒前
7秒前
小蘑菇应助搁浅采纳,获得10
8秒前
Baneyhua完成签到,获得积分10
8秒前
文献看不懂应助剑K采纳,获得10
8秒前
同力力力发布了新的文献求助10
8秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767607
求助须知:如何正确求助?哪些是违规求助? 3312246
关于积分的说明 10162904
捐赠科研通 3027595
什么是DOI,文献DOI怎么找? 1661595
邀请新用户注册赠送积分活动 794164
科研通“疑难数据库(出版商)”最低求助积分说明 756002