In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation

代谢工程 合成气 发酵 化学 生物信息学 通量平衡分析 梭菌 生物化学 生化工程 生物 细菌 遗传学 基因 工程类 催化作用
作者
Jin Chen,Michael A. Henson
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:38: 389-400 被引量:39
标识
DOI:10.1016/j.ymben.2016.10.002
摘要

Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry完成签到,获得积分20
刚刚
乐乐应助老迟到的凝冬采纳,获得10
刚刚
Jasper应助小锤采纳,获得10
1秒前
1秒前
yutoa完成签到,获得积分10
1秒前
深情安青应助黄臻采纳,获得10
2秒前
3秒前
3秒前
大模型应助朝朝采纳,获得10
3秒前
4秒前
5秒前
无极微光应助qw采纳,获得20
6秒前
6秒前
不吃香菜发布了新的文献求助10
6秒前
李健的粉丝团团长应助墨z采纳,获得10
6秒前
6秒前
结实的XMZ发布了新的文献求助10
7秒前
7秒前
7秒前
小南完成签到,获得积分10
7秒前
salvage完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
陈小瑜完成签到,获得积分10
9秒前
JamesPei应助开朗的山彤采纳,获得10
9秒前
酷波er应助开朗的山彤采纳,获得10
9秒前
10秒前
yaoyao110发布了新的文献求助10
10秒前
溟夔蝶魅发布了新的文献求助10
10秒前
小蘑菇应助asir_xw采纳,获得10
11秒前
11秒前
11秒前
old杜发布了新的文献求助10
12秒前
小锤发布了新的文献求助10
12秒前
lucky发布了新的文献求助10
13秒前
lyb发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051