亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation

代谢工程 合成气 发酵 化学 生物信息学 通量平衡分析 梭菌 生物化学 生化工程 生物 细菌 遗传学 基因 工程类 催化作用
作者
Jin Chen,Michael A. Henson
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:38: 389-400 被引量:39
标识
DOI:10.1016/j.ymben.2016.10.002
摘要

Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助步念采纳,获得30
2秒前
Ava应助查莉采纳,获得10
11秒前
清晨仪仪发布了新的文献求助10
37秒前
麻辣香锅发布了新的文献求助10
52秒前
科研通AI6应助CC采纳,获得10
1分钟前
李李爱种花完成签到 ,获得积分10
1分钟前
1分钟前
查莉发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助麻辣香锅采纳,获得10
1分钟前
1分钟前
2分钟前
小萌兽完成签到 ,获得积分10
2分钟前
ysy完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
直率的青寒完成签到,获得积分10
3分钟前
宝石完成签到,获得积分10
4分钟前
null应助ceeray23采纳,获得20
4分钟前
4分钟前
ceeray23发布了新的文献求助20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
羞涩的傲菡完成签到,获得积分10
5分钟前
5分钟前
nssanc完成签到,获得积分10
6分钟前
linlinlin发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
FashionBoy应助linlinlin采纳,获得10
6分钟前
十一完成签到 ,获得积分10
6分钟前
QQWRV完成签到,获得积分10
6分钟前
6分钟前
CC发布了新的文献求助10
7分钟前
ceeray23发布了新的文献求助20
7分钟前
威武千青发布了新的文献求助20
7分钟前
8分钟前
Mrzrgh完成签到,获得积分10
8分钟前
钱邦国完成签到 ,获得积分10
8分钟前
小乐儿~完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622233
求助须知:如何正确求助?哪些是违规求助? 4707262
关于积分的说明 14938986
捐赠科研通 4769501
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475041