离子电导率
快离子导体
电解质
钙钛矿(结构)
材料科学
电导率
相(物质)
离子键合
锂(药物)
化学工程
离子
无机化学
化学
物理化学
结晶学
有机化学
电极
内分泌学
工程类
医学
作者
Jinlong Zhu,Shuai Li,Yi Zhang,John W Howard,Xujie Lü,Yutao Li,Yonggang Wang,Ravhi S. Kumar,Liping Wang,Yusheng Zhao
摘要
Cubic anti-perovskites with general formula Li3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li3OBr and layered Li7O2Br3, by solid state reaction routes. The results indicate that with the phase fraction of Li7O2Br3 increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li3OBr. Formation energy calculations revealed the meta-stable nature of Li7O2Br3, which supports the great difficulty in producing phase-pure Li7O2Br3 at ambient pressure. Methods of obtaining phase-pure Li7O2Br3 will continue to be explored, including both high pressure and metathesis techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI