Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli

丁醇 代谢工程 代谢组学 大肠杆菌 生物化学 醇脱氢酶 发酵 代谢组 化学 生物 乙醇 生物信息学 基因
作者
Toshiyuki Ohtake,Sammy Pontrelli,Walter A. Laviña,James C. Liao,Sastia Prama Putri,Eiichiro Fukusaki
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:41: 135-143 被引量:90
标识
DOI:10.1016/j.ymben.2017.04.003
摘要

High titer 1-butanol production in Escherichia coli has previously been achieved by overexpression of a modified clostridial 1-butanol production pathway and subsequent deletion of native fermentation pathways. This strategy couples growth with production as 1-butanol pathway offers the only available terminal electron acceptors required for growth in anaerobic conditions. With further inclusion of other well-established metabolic engineering principles, a titer of 15g/L has been obtained. In achieving this titer, many currently existing strategies have been exhausted, and 1-butanol toxicity level has been surpassed. Therefore, continued engineering of the host strain for increased production requires implementation of alternative strategies that seek to identify non-obvious targets for improvement. In this study, a metabolomics-driven approach was used to reveal a CoA imbalance resulting from a pta deletion that caused undesirable accumulation of pyruvate, butanoate, and other CoA-derived compounds. Using metabolomics, the reduction of butanoyl-CoA to butanal catalyzed by alcohol dehydrogenase AdhE2 was determined as a rate-limiting step. Fine-tuning of this activity and subsequent release of free CoA restored the CoA balance that resulted in a titer of 18.3g/L upon improvement of total free CoA levels using cysteine supplementation. By enhancing AdhE2 activity, carbon flux was directed towards 1-butanol production and undesirable accumulation of pyruvate and butanoate was diminished. This study represents the initial report describing the improvement of 1-butanol production in E. coli by resolving CoA imbalance, which was based on metabolome analysis and rational metabolic engineering strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助杰森斯坦虎采纳,获得10
刚刚
刚刚
wanwei完成签到,获得积分10
1秒前
莹亮的星空完成签到,获得积分0
2秒前
2秒前
听雨发布了新的文献求助10
2秒前
3秒前
5秒前
伶俐的海瑶完成签到,获得积分10
5秒前
jiagai发布了新的文献求助10
5秒前
团团圆圆也完成签到 ,获得积分10
5秒前
5秒前
wangli完成签到,获得积分10
5秒前
5秒前
6秒前
Jasper应助天天采纳,获得10
6秒前
小白完成签到,获得积分10
6秒前
愉快道之完成签到 ,获得积分10
7秒前
xucc完成签到,获得积分10
7秒前
lllll完成签到 ,获得积分10
7秒前
子车茗应助garrick采纳,获得20
7秒前
迟大猫应助方墨采纳,获得10
7秒前
苹果盛男完成签到,获得积分10
8秒前
小蘑菇应助善良书蕾采纳,获得10
8秒前
SYLH应助xuwusama采纳,获得10
8秒前
9秒前
Leslie_0719完成签到,获得积分10
9秒前
小泉完成签到 ,获得积分10
9秒前
深竹月完成签到,获得积分20
9秒前
yeah发布了新的文献求助20
10秒前
lele发布了新的文献求助10
11秒前
11秒前
共享精神应助温柔的蛋挞采纳,获得10
12秒前
hinatazaka46完成签到 ,获得积分10
12秒前
Zzzzz发布了新的文献求助10
12秒前
idemipere完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3480155
求助须知:如何正确求助?哪些是违规求助? 3070670
关于积分的说明 9118363
捐赠科研通 2762302
什么是DOI,文献DOI怎么找? 1515737
邀请新用户注册赠送积分活动 701185
科研通“疑难数据库(出版商)”最低求助积分说明 700102