Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli

丁醇 代谢工程 代谢组学 大肠杆菌 生物化学 醇脱氢酶 发酵 代谢组 化学 生物 乙醇 生物信息学 基因
作者
Toshiyuki Ohtake,Sammy Pontrelli,Walter A. Laviña,James C. Liao,Sastia Prama Putri,Eiichiro Fukusaki
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:41: 135-143 被引量:90
标识
DOI:10.1016/j.ymben.2017.04.003
摘要

High titer 1-butanol production in Escherichia coli has previously been achieved by overexpression of a modified clostridial 1-butanol production pathway and subsequent deletion of native fermentation pathways. This strategy couples growth with production as 1-butanol pathway offers the only available terminal electron acceptors required for growth in anaerobic conditions. With further inclusion of other well-established metabolic engineering principles, a titer of 15g/L has been obtained. In achieving this titer, many currently existing strategies have been exhausted, and 1-butanol toxicity level has been surpassed. Therefore, continued engineering of the host strain for increased production requires implementation of alternative strategies that seek to identify non-obvious targets for improvement. In this study, a metabolomics-driven approach was used to reveal a CoA imbalance resulting from a pta deletion that caused undesirable accumulation of pyruvate, butanoate, and other CoA-derived compounds. Using metabolomics, the reduction of butanoyl-CoA to butanal catalyzed by alcohol dehydrogenase AdhE2 was determined as a rate-limiting step. Fine-tuning of this activity and subsequent release of free CoA restored the CoA balance that resulted in a titer of 18.3g/L upon improvement of total free CoA levels using cysteine supplementation. By enhancing AdhE2 activity, carbon flux was directed towards 1-butanol production and undesirable accumulation of pyruvate and butanoate was diminished. This study represents the initial report describing the improvement of 1-butanol production in E. coli by resolving CoA imbalance, which was based on metabolome analysis and rational metabolic engineering strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小缓完成签到,获得积分10
刚刚
ypp完成签到,获得积分10
刚刚
灿烂完成签到,获得积分10
刚刚
1秒前
陈少华完成签到 ,获得积分10
1秒前
iAlvinz完成签到,获得积分10
1秒前
chen完成签到,获得积分10
2秒前
末小皮完成签到,获得积分10
2秒前
alan完成签到,获得积分10
2秒前
淡然善斓完成签到,获得积分10
3秒前
changaipei完成签到,获得积分10
3秒前
全一斩完成签到,获得积分10
3秒前
4秒前
周易完成签到,获得积分10
4秒前
foreknowledge完成签到,获得积分10
5秒前
guojingjing发布了新的文献求助10
5秒前
小萌完成签到,获得积分10
6秒前
Jovid完成签到,获得积分10
6秒前
快乐指甲油完成签到 ,获得积分10
6秒前
七月完成签到 ,获得积分10
6秒前
bilibala完成签到,获得积分10
7秒前
louis完成签到,获得积分10
7秒前
Seven7完成签到,获得积分10
8秒前
9秒前
阿媛呐完成签到,获得积分10
9秒前
小章完成签到,获得积分10
10秒前
诚心谷南完成签到,获得积分10
10秒前
FashionBoy应助森淼采纳,获得10
10秒前
DDT完成签到,获得积分10
11秒前
非常完成签到,获得积分10
11秒前
mmiww完成签到,获得积分10
11秒前
ZhuJY完成签到,获得积分10
12秒前
lessormoto完成签到,获得积分20
12秒前
gms完成签到,获得积分10
12秒前
12秒前
Jj完成签到,获得积分10
14秒前
14秒前
15秒前
自然的樱桃完成签到,获得积分10
16秒前
不想看文献完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890