二乙烯基苯
吸附
咪唑
单体
胺气处理
介孔材料
高分子化学
化学
聚合物
材料科学
有机化学
苯乙烯
催化作用
共聚物
作者
Tahereh Jafari,Ehsan Moharreri,Panteha Toloueinia,Alireza Shirazi Amin,Sanjubala Sahoo,Nasser Khakpash,Iman Noshadi,S. P. Alpay,Steven L. Suib
标识
DOI:10.1016/j.jcou.2017.03.004
摘要
We report microwave assisted synthesis of a series of highly hydrophobic porous organic polymers of poly divinylbenzene (PDVB), for the first time, which were modified by amine-rich co-monomers of vinyl imidazole (VI) and vinyl triazole (VT) resulting in PDVB-VI and PDVB-VT adsorbents. There is an optimum amount of incorporated co-monomer and initiator which led to high adsorptive activity of the material towards CO2. Atmospheric CO2 adsorption was enhanced by the addition of amine moieties while maintaining an optimum surface area and pore volume. A certain amount of initiator led to better incorporation of VT monomer while surface area and pores remain accessible. A maximum CO2 adsorption of 2.65 mmolg-1 at 273 K/1 bar was achieved for triazole based adsorbent (PDVB-VT) with 0.7 g of VT and 0.07 g of initiator. In comparison with a non-functionalized material (PDVB) with 1.2 mmolg-1 CO2 uptake, the adsorption efficiency was enhanced more than twice. The adsorbent maintained its efficiency up to seven cycles. Theoretical modeling confirms the active site is nitrogen on the imidazole/triazole ring and that incorporation of VT to the polymeric networks enhanced the adsorptive properties better than vinyl imidazole (VI) due to more active sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI