超级电容器
电容
纳米棒
材料科学
电极
储能
硒化物
电容感应
化学工程
碳纤维
光电子学
纳米技术
复合材料
化学
计算机科学
冶金
复合数
功率(物理)
物理
硒
物理化学
量子力学
工程类
操作系统
作者
Pei Xu,Wei Zeng,Shaohong Luo,Chenxi Ling,Junwu Xiao,Aijun Zhou,Yimin Sun,Kin Liao
标识
DOI:10.1016/j.electacta.2017.04.121
摘要
In this paper, we synthesize a new type of Ni-Co selenides (Ni0.34Co0.66Se2 nanorod) on carbon fiber paper (CFP) as flexible electrode for supercapacitor. Comparing with NiCo2O4 and NiCo2S4, the Ni0.34Co0.66Se2 exhibits superior capacitive performance including high areal capacitance (2.61 F cm−2 at 4 mA cm−2), good rate capability (75% of retention from 4 to 20 mA cm−2) and excellent long-term cycling stability (only 7.4% of loss after 6000 cycles). When assembled into a symmetric supercapacitor, the as-obtained, Ni0.34Co0.66Se2 based device possesses a volumetric capacitance of 14.55 F cm−3 at 1 mA cm−2, and a volumetric energy density of 0.47 mWh cm−3 at 10 mA cm−2, which are superior to most of the symmetric supercapacitors reported previously. Then we explore the energy storage mechanism of Ni0.34Co0.66Se2 by monitoring the changes in component, morphology, electroactive surface area (ESA) and electron transport characteristics. It is found that the Ni0.34Co0.66Se2 species suffer from serious Se loss and transform into NixCo1-xO gradully during charge/discharge cycles, but the ESA increases significantly in this process. In addition, the Ni0.34Co0.66Se2 electrode possesses lower internal resistance, indicating its good electron transfer properties. Both these factors will compensate the performance degradation from Se loss, resulted in better rate capability and cycling stability for Ni0.34Co0.66Se2 electrode. Therefore, it is believed that the proposed 3D Ni0.34Co0.66Se2 nanorod array modified CFP with optimizational component and structual design opens a new horizen in the development of high-performance flexible supercapacitor electrode with new charge storage mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI