The Role of the <b><i>ydiB</i></b> Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS<sup>-</sup> Strain of <b><i>Escherichia coli</i></b>
The culture of engineered <i>Escherichia coli</i> for shikimic acid (SA) production results in the synthesis of quinic acid (QA) and dehydroshikimic acid (DHS), reducing SA yield and impairing downstream processes. The synthesis of QA by quinate/shikimate dehydrogenase (YdiB, <i>ydiB</i>) has been previously proposed; however, the precise role for this enzyme in the production of QA in engineered strains of <i>E. coli</i> for SA production remains unclear. We report the effect of the inactivation or the overexpression of <i>ydiB</i> in <i>E. coli</i> strain PB12.SA22 on SA, QA, and DHS production in batch fermentor cultures. The results showed that the inactivation of <i>ydiB </i>resulted in a 75% decrease in the molar yield of QA and a 6.17% reduction in the yield of QA (mol/mol) relative to SA with respect to the parental strain. The overexpression of <i>ydiB</i> caused a 500% increase in the molar yield of QA and resulted in a 152% increase in QA (mol/mol) relative to SA, with a sharp decrease in SA production. Production of SA, QA, and DHS in parental and derivative <i>ydiB </i>strains suggests that the synthesis of QA results from the reduction of 3-dehydroquinate by YdiB before its conversion to DHS.