摘要
No AccessTechnical NoteLarge-Eddy Simulation of NACA 0015 Airfoil Flow at Reynolds Number of 1.6×106Makoto Sato, Kengo Asada, Taku Nonomura, Soshi Kawai and Kozo FujiiMakoto SatoJapan Aerospace Exploration Agency, Sagamihara 252-5210, Japan, Kengo AsadaUniversity of Tokyo, Sagamihara 252-5210, Japan, Taku NonomuraJapan Aerospace Exploration Agency, Sagamihara 252-5210, Japan, Soshi KawaiTohoku University, Sendai 980-8579, Japan and Kozo FujiiJapan Aerospace Exploration Agency, Sagamihara 252-5210, JapanPublished Online:9 Oct 2016https://doi.org/10.2514/1.J054963SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Fureby C., "Towards the Use of Large Eddy Simulation in Engineering," Progress in Aerospace Sciences, Vol. 44, No. 6, 2008, pp. 381–396. doi:https://doi.org/10.1016/j.paerosci.2008.07.003 PAESD6 0376-0421 CrossrefGoogle Scholar[2] Fröhlich J. and von Terzi D., "Hybrid LES/RANS Methods for the Simulation of Turbulent Flows," Progress in Aerospace Sciences, Vol. 44, No. 5, 2008, pp. 349–377. doi:https://doi.org/10.1016/j.paerosci.2008.05.001 PAESD6 0376-0421 CrossrefGoogle Scholar[3] Mary I. and Sagaut P., "Large Eddy Simulation of Flow Around an Airfoil Near Stall," AIAA Journal, Vol. 40, No. 6, 2002, pp. 1139–1145. doi:https://doi.org/10.2514/2.1763 AIAJAH 0001-1452 LinkGoogle Scholar[4] Mellen C. P., Fröhlich J. and Rodi W., "Lessons from LESFOIL Project on Large-Eddy Simulation of Flow Around an Airfoil," AIAA Journal, Vol. 41, No. 4, April 2003, pp. 573–581. doi:https://doi.org/10.2514/2.2005 AIAJAH 0001-1452 LinkGoogle Scholar[5] Cheng S. Y., Tsubokura M., Nakashima T., Okada Y. and Nouzawa T., "Effects of Transient Aerodynamics on Vehicle Stability: A Large Eddy Simulation Analysis," 30th AIAA Applied Aerodynamics Conference, AIAA Paper 2012-3125, June 2012. LinkGoogle Scholar[6] Nishikawa T., Yamada Y., Sakuma M. and Kato C., "Application of Fully-Resolved Large Eddy Simulation to KVLCC2:-Bare Hull Double Model at Model Ship Reynolds Number," Japan Society of Naval Architects and Ocean Engineers, Vol. 16, 2012, pp. 1–9. doi:https://doi.org/10.2534/jjasnaoe.16.1 CrossrefGoogle Scholar[7] Glezer A. and Amitay M., "Synthetic Jets," Annual Review of Fluid Mechanics, Vol. 34, 2002, pp. 503–529. doi:https://doi.org/10.1146/annurev.fluid.34.090501.094913 ARVFA3 0066-4189 CrossrefGoogle Scholar[8] Corke T. C., Post M. L. and Orlov D. M., "SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization and Applications," Progress in Aerospace Sciences, Vol. 43, Nos. 7–8, 2007, pp. 193–217. doi:https://doi.org/10.1016/j.paerosci.2007.06.001 PAESD6 0376-0421 CrossrefGoogle Scholar[9] Patel M. P., Ng T. T., Vasudevan S., Corke T. C., Post M. L., McLaughlin T. E. and Suchomel C. F., "Scaling Effects of an Aerodynamic Plasma Actuator," Journal of Aircraft, Vol. 45, No. 1, 2008, pp. 223–236. doi:https://doi.org/10.2514/1.31830 LinkGoogle Scholar[10] Benard N. and Moreau E., "Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control," Experiments in Fluids, Vol. 55, No. 11, 2014, p. 1846. doi:https://doi.org/10.1007/s00348-014-1846-x EXFLDU 0723-4864 CrossrefGoogle Scholar[11] Little J., Takashima K., Nishihara M., Adamovich I. and Samimy M., "Separation Control with Nanosecond-Pulse-Driven Dielectric Barrier Discharge Plasma Actuators," AIAA Journal, Vol. 50, No. 2, 2012, pp. 350–365. doi:https://doi.org/10.2514/1.J051114 AIAJAH 0001-1452 LinkGoogle Scholar[12] Rizzetta D. P. and Visbal M. R., "Numerical Investigation of Plasma-Based Control for Low-Reynolds-Number Airfoil Flows," AIAA Journal, Vol. 49, No. 2, Feb. 2011, pp. 411–425. doi:https://doi.org/10.2514/1.J050755 AIAJAH 0001-1452 LinkGoogle Scholar[13] Asada K., Nonomura T., Aono H., Sato M., Okada K. and Fujii K., "LES of Transient Flows Controlled by DBD Plasma Actuator over a Stalled Airfoil," International Journal of Computational Fluid Dynamics, Vol. 29, 2015, pp. 215–229. IJCFEC 1061-8562 CrossrefGoogle Scholar[14] Sato M., Aono H., Yakeno A., Nonomura T., Fujii K., Okada K. and Asada K., "Multifactorial Effects of Operating Conditions of Dielectric-Barrier-Discharge Plasma Actuator on Laminar-Separated-Flow Control," AIAA Journal, Vol. 53, No. 9, Sept. 2015, pp. 2544–2559. doi:https://doi.org/10.2514/1.J053700 AIAJAH 0001-1452 LinkGoogle Scholar[15] Bertagnolio F., "NACA0015 Measurements in LM Wind Tunnel and Turbulence Generated Noise," Technical University of Denmark Roskilde Risø-R-1657(EN), Denmark, 2008. Google Scholar[16] Fujii K., Endo H. and Yasuhara M., "Activities of Computational Fluid Dynamics in Japan: Compressible Flow Simulations," High Performance Computing Research and Practice in Japan, John Wiley & Sons, New York, 1990, pp. 139–161. Google Scholar[17] Aono H., Nonomura T., Iizuka N., Ohsako T., Inari T., Hashimoto Y., Takaki R. and Fujii K., "Scalar Tuning of a Fluid Solver Using Compact Scheme for a Supercomputer with a Distributed Memory Architecture," CFD Letters, Vol. 5, No. 4, 2013, pp. 143–152. Google Scholar[18] Lele S. K., "Compact Finite Difference Schemes with Spectral-Like Resolution," Journal of Computational Physics, Vol. 103, No. 1, 1992, pp. 16–42. doi:https://doi.org/10.1016/0021-9991(92)90324-R JCTPAH 0021-9991 CrossrefGoogle Scholar[19] Visbal M. R. and Gaitonde D. V., "Computation of Aeroacoustic Fields on General Geometries Using Compact Differencing and Filtering Schemes," 30th Fluid Dynamics Conference, AIAA Paper 1999-3706, 1999. LinkGoogle Scholar[20] Gaitonde D. V. and Visbal M. R., "Padé-Type Higher-Order Boundary Filters for the Navier–Stokes Equations," AIAA Journal, Vol. 38, No. 11, 2000, pp. 2103–2112. doi:https://doi.org/10.2514/2.872 AIAJAH 0001-1452 LinkGoogle Scholar[21] Visbal M. R. and Rizzetta D. P., "Large-Eddy Simulation on Curvilinear Grids Using Compact Difference and Fluttering Schemes," Journal of Fluids Engineering, Vol. 124, No. 4, 2002, pp. 836–847. doi:https://doi.org/10.1115/1.1517564 CrossrefGoogle Scholar[22] Fujii K., "Simple Ideas for the Accuracy and Efficiency Improvement of the Compressible Flow Simulation Methods," Proceedings of the International CFD Workshop on Supersonic Transport Design, Tokyo, March 1998, pp. 20–23. Google Scholar[23] Iizuka N., "Study of Mach Number Effect on the Dynamic Stability of a Blunt Re-Entry Capsule," Ph.D. Thesis, Univ. of Tokyo, Tokyo, Japan, 2006. Google Scholar[24] Kawai S. and Fujii K., "Compact Scheme with Filtering for Large-Eddy Simulation of Transitional Boundary Layer," AIAA Journal, Vol. 46, No. 3, March 2008, pp. 690–700. doi:https://doi.org/10.2514/1.32239 AIAJAH 0001-1452 LinkGoogle Scholar[25] Choi H. and Moin P., "Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow," Journal of Computational Physics, Vol. 113, No. 1, 1994, pp. 1–4. doi:https://doi.org/10.1006/jcph.1994.1112 JCTPAH 0021-9991 CrossrefGoogle Scholar[26] Nagano Y., Tsuji T. and Houra T., "Structure of Turbulent Boundary Layer Subjected to Adverse Pressure Gradient," International Journal of Heat and Fluid Flow, Vol. 19, No. 5, 1998, pp. 563–572. doi:https://doi.org/10.1016/S0142-727X(98)10013-9 IJHFD2 0142-727X CrossrefGoogle Scholar[27] Lee J.-H. and Sung H. J., "Structures in Turbulent Boundary Layers Subjected to Adverse Pressure Gradients," Journal of Fluid Mechanics, Vol. 639, 2009, pp. 101–131. doi:https://doi.org/10.1017/S0022112009990814 JFLSA7 0022-1120 CrossrefGoogle Scholar[28] Inoue M., Pullin D. I., Harun Z. and Marusic I., "LES of the Adverse-Pressure Gradient Turbulent Boundary Layer," International Journal of Heat and Fluid Flow, Vol. 44, Dec. 2013, pp. 293–300. doi:https://doi.org/10.1016/j.ijheatfluidflow.2013.06.011 IJHFD2 0142-727X CrossrefGoogle Scholar[29] Kojima R., Nonomura T., Oyama A. and Fujii K., "Large-Eddy Simulation of Low-Reynolds-Number Flow over Thick and Thin NACA Airfoils," Journal of Aircraft, Vol. 50, No. 1, 2013, pp. 187–196. doi:https://doi.org/10.2514/1.C031849 LinkGoogle Scholar[30] Anyoji M., Nonomura T., Aono H., Oyama A., Fujii K., Nagai H. and Asai K., "Computational and Experimental Analysis of a High-Performance Airfoil Under Low-Reynolds-Number Flow Condition," Journal of Aircraft, Vol. 51, No. 6, May 2014, pp. 1864–1872. doi:https://doi.org/10.2514/1.C032553 LinkGoogle Scholar[31] Lee D., Kawai S., Nonomura T., Anyoji M., Aono H., Oyama A., Asai K. and Fujii K., "Mechanisms of Surface Pressure Distribution Within a Laminar Separation Bubble at Different Reynolds Numbers," Physics of Fluids, Vol. 27, No. 2, 2015, Paper 023602. CrossrefGoogle Scholar[32] Sato M., Nonomura T., Okada K., Asada K., Aono H., Yakeno A., Abe Y. and Fujii K., "Mechanisms for Laminar Separated-Flow Control Using Dielectric-Barrier-Discharge Plasma Actuator at Low Reynolds Number," Physics of Fluids, Vol. 27, No. 11, 2015, Paper 117101. CrossrefGoogle Scholar Previous article Next article