Large-Eddy Simulation of NACA 0015 Airfoil Flow at Reynolds Number of 1.6×106

翼型 雷诺数 机械 NACA翼型 雷诺平均Navier-Stokes方程 大涡模拟 分离涡模拟 流量(数学) 物理 湍流 材料科学
作者
Makoto Sato,Kengo Asada,Taku Nonomura,Soshi Kawai,Kozo Fujii
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:55 (2): 673-679 被引量:21
标识
DOI:10.2514/1.j054963
摘要

No AccessTechnical NoteLarge-Eddy Simulation of NACA 0015 Airfoil Flow at Reynolds Number of 1.6×106Makoto Sato, Kengo Asada, Taku Nonomura, Soshi Kawai and Kozo FujiiMakoto SatoJapan Aerospace Exploration Agency, Sagamihara 252-5210, Japan, Kengo AsadaUniversity of Tokyo, Sagamihara 252-5210, Japan, Taku NonomuraJapan Aerospace Exploration Agency, Sagamihara 252-5210, Japan, Soshi KawaiTohoku University, Sendai 980-8579, Japan and Kozo FujiiJapan Aerospace Exploration Agency, Sagamihara 252-5210, JapanPublished Online:9 Oct 2016https://doi.org/10.2514/1.J054963SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Fureby C., "Towards the Use of Large Eddy Simulation in Engineering," Progress in Aerospace Sciences, Vol. 44, No. 6, 2008, pp. 381–396. doi:https://doi.org/10.1016/j.paerosci.2008.07.003 PAESD6 0376-0421 CrossrefGoogle Scholar[2] Fröhlich J. and von Terzi D., "Hybrid LES/RANS Methods for the Simulation of Turbulent Flows," Progress in Aerospace Sciences, Vol. 44, No. 5, 2008, pp. 349–377. doi:https://doi.org/10.1016/j.paerosci.2008.05.001 PAESD6 0376-0421 CrossrefGoogle Scholar[3] Mary I. and Sagaut P., "Large Eddy Simulation of Flow Around an Airfoil Near Stall," AIAA Journal, Vol. 40, No. 6, 2002, pp. 1139–1145. doi:https://doi.org/10.2514/2.1763 AIAJAH 0001-1452 LinkGoogle Scholar[4] Mellen C. P., Fröhlich J. and Rodi W., "Lessons from LESFOIL Project on Large-Eddy Simulation of Flow Around an Airfoil," AIAA Journal, Vol. 41, No. 4, April 2003, pp. 573–581. doi:https://doi.org/10.2514/2.2005 AIAJAH 0001-1452 LinkGoogle Scholar[5] Cheng S. Y., Tsubokura M., Nakashima T., Okada Y. and Nouzawa T., "Effects of Transient Aerodynamics on Vehicle Stability: A Large Eddy Simulation Analysis," 30th AIAA Applied Aerodynamics Conference, AIAA Paper 2012-3125, June 2012. LinkGoogle Scholar[6] Nishikawa T., Yamada Y., Sakuma M. and Kato C., "Application of Fully-Resolved Large Eddy Simulation to KVLCC2:-Bare Hull Double Model at Model Ship Reynolds Number," Japan Society of Naval Architects and Ocean Engineers, Vol. 16, 2012, pp. 1–9. doi:https://doi.org/10.2534/jjasnaoe.16.1 CrossrefGoogle Scholar[7] Glezer A. and Amitay M., "Synthetic Jets," Annual Review of Fluid Mechanics, Vol. 34, 2002, pp. 503–529. doi:https://doi.org/10.1146/annurev.fluid.34.090501.094913 ARVFA3 0066-4189 CrossrefGoogle Scholar[8] Corke T. C., Post M. L. and Orlov D. M., "SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization and Applications," Progress in Aerospace Sciences, Vol. 43, Nos. 7–8, 2007, pp. 193–217. doi:https://doi.org/10.1016/j.paerosci.2007.06.001 PAESD6 0376-0421 CrossrefGoogle Scholar[9] Patel M. P., Ng T. T., Vasudevan S., Corke T. C., Post M. L., McLaughlin T. E. and Suchomel C. F., "Scaling Effects of an Aerodynamic Plasma Actuator," Journal of Aircraft, Vol. 45, No. 1, 2008, pp. 223–236. doi:https://doi.org/10.2514/1.31830 LinkGoogle Scholar[10] Benard N. and Moreau E., "Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control," Experiments in Fluids, Vol. 55, No. 11, 2014, p. 1846. doi:https://doi.org/10.1007/s00348-014-1846-x EXFLDU 0723-4864 CrossrefGoogle Scholar[11] Little J., Takashima K., Nishihara M., Adamovich I. and Samimy M., "Separation Control with Nanosecond-Pulse-Driven Dielectric Barrier Discharge Plasma Actuators," AIAA Journal, Vol. 50, No. 2, 2012, pp. 350–365. doi:https://doi.org/10.2514/1.J051114 AIAJAH 0001-1452 LinkGoogle Scholar[12] Rizzetta D. P. and Visbal M. R., "Numerical Investigation of Plasma-Based Control for Low-Reynolds-Number Airfoil Flows," AIAA Journal, Vol. 49, No. 2, Feb. 2011, pp. 411–425. doi:https://doi.org/10.2514/1.J050755 AIAJAH 0001-1452 LinkGoogle Scholar[13] Asada K., Nonomura T., Aono H., Sato M., Okada K. and Fujii K., "LES of Transient Flows Controlled by DBD Plasma Actuator over a Stalled Airfoil," International Journal of Computational Fluid Dynamics, Vol. 29, 2015, pp. 215–229. IJCFEC 1061-8562 CrossrefGoogle Scholar[14] Sato M., Aono H., Yakeno A., Nonomura T., Fujii K., Okada K. and Asada K., "Multifactorial Effects of Operating Conditions of Dielectric-Barrier-Discharge Plasma Actuator on Laminar-Separated-Flow Control," AIAA Journal, Vol. 53, No. 9, Sept. 2015, pp. 2544–2559. doi:https://doi.org/10.2514/1.J053700 AIAJAH 0001-1452 LinkGoogle Scholar[15] Bertagnolio F., "NACA0015 Measurements in LM Wind Tunnel and Turbulence Generated Noise," Technical University of Denmark Roskilde Risø-R-1657(EN), Denmark, 2008. Google Scholar[16] Fujii K., Endo H. and Yasuhara M., "Activities of Computational Fluid Dynamics in Japan: Compressible Flow Simulations," High Performance Computing Research and Practice in Japan, John Wiley & Sons, New York, 1990, pp. 139–161. Google Scholar[17] Aono H., Nonomura T., Iizuka N., Ohsako T., Inari T., Hashimoto Y., Takaki R. and Fujii K., "Scalar Tuning of a Fluid Solver Using Compact Scheme for a Supercomputer with a Distributed Memory Architecture," CFD Letters, Vol. 5, No. 4, 2013, pp. 143–152. Google Scholar[18] Lele S. K., "Compact Finite Difference Schemes with Spectral-Like Resolution," Journal of Computational Physics, Vol. 103, No. 1, 1992, pp. 16–42. doi:https://doi.org/10.1016/0021-9991(92)90324-R JCTPAH 0021-9991 CrossrefGoogle Scholar[19] Visbal M. R. and Gaitonde D. V., "Computation of Aeroacoustic Fields on General Geometries Using Compact Differencing and Filtering Schemes," 30th Fluid Dynamics Conference, AIAA Paper 1999-3706, 1999. LinkGoogle Scholar[20] Gaitonde D. V. and Visbal M. R., "Padé-Type Higher-Order Boundary Filters for the Navier–Stokes Equations," AIAA Journal, Vol. 38, No. 11, 2000, pp. 2103–2112. doi:https://doi.org/10.2514/2.872 AIAJAH 0001-1452 LinkGoogle Scholar[21] Visbal M. R. and Rizzetta D. P., "Large-Eddy Simulation on Curvilinear Grids Using Compact Difference and Fluttering Schemes," Journal of Fluids Engineering, Vol. 124, No. 4, 2002, pp. 836–847. doi:https://doi.org/10.1115/1.1517564 CrossrefGoogle Scholar[22] Fujii K., "Simple Ideas for the Accuracy and Efficiency Improvement of the Compressible Flow Simulation Methods," Proceedings of the International CFD Workshop on Supersonic Transport Design, Tokyo, March 1998, pp. 20–23. Google Scholar[23] Iizuka N., "Study of Mach Number Effect on the Dynamic Stability of a Blunt Re-Entry Capsule," Ph.D. Thesis, Univ. of Tokyo, Tokyo, Japan, 2006. Google Scholar[24] Kawai S. and Fujii K., "Compact Scheme with Filtering for Large-Eddy Simulation of Transitional Boundary Layer," AIAA Journal, Vol. 46, No. 3, March 2008, pp. 690–700. doi:https://doi.org/10.2514/1.32239 AIAJAH 0001-1452 LinkGoogle Scholar[25] Choi H. and Moin P., "Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow," Journal of Computational Physics, Vol. 113, No. 1, 1994, pp. 1–4. doi:https://doi.org/10.1006/jcph.1994.1112 JCTPAH 0021-9991 CrossrefGoogle Scholar[26] Nagano Y., Tsuji T. and Houra T., "Structure of Turbulent Boundary Layer Subjected to Adverse Pressure Gradient," International Journal of Heat and Fluid Flow, Vol. 19, No. 5, 1998, pp. 563–572. doi:https://doi.org/10.1016/S0142-727X(98)10013-9 IJHFD2 0142-727X CrossrefGoogle Scholar[27] Lee J.-H. and Sung H. J., "Structures in Turbulent Boundary Layers Subjected to Adverse Pressure Gradients," Journal of Fluid Mechanics, Vol. 639, 2009, pp. 101–131. doi:https://doi.org/10.1017/S0022112009990814 JFLSA7 0022-1120 CrossrefGoogle Scholar[28] Inoue M., Pullin D. I., Harun Z. and Marusic I., "LES of the Adverse-Pressure Gradient Turbulent Boundary Layer," International Journal of Heat and Fluid Flow, Vol. 44, Dec. 2013, pp. 293–300. doi:https://doi.org/10.1016/j.ijheatfluidflow.2013.06.011 IJHFD2 0142-727X CrossrefGoogle Scholar[29] Kojima R., Nonomura T., Oyama A. and Fujii K., "Large-Eddy Simulation of Low-Reynolds-Number Flow over Thick and Thin NACA Airfoils," Journal of Aircraft, Vol. 50, No. 1, 2013, pp. 187–196. doi:https://doi.org/10.2514/1.C031849 LinkGoogle Scholar[30] Anyoji M., Nonomura T., Aono H., Oyama A., Fujii K., Nagai H. and Asai K., "Computational and Experimental Analysis of a High-Performance Airfoil Under Low-Reynolds-Number Flow Condition," Journal of Aircraft, Vol. 51, No. 6, May 2014, pp. 1864–1872. doi:https://doi.org/10.2514/1.C032553 LinkGoogle Scholar[31] Lee D., Kawai S., Nonomura T., Anyoji M., Aono H., Oyama A., Asai K. and Fujii K., "Mechanisms of Surface Pressure Distribution Within a Laminar Separation Bubble at Different Reynolds Numbers," Physics of Fluids, Vol. 27, No. 2, 2015, Paper 023602. CrossrefGoogle Scholar[32] Sato M., Nonomura T., Okada K., Asada K., Aono H., Yakeno A., Abe Y. and Fujii K., "Mechanisms for Laminar Separated-Flow Control Using Dielectric-Barrier-Discharge Plasma Actuator at Low Reynolds Number," Physics of Fluids, Vol. 27, No. 11, 2015, Paper 117101. CrossrefGoogle Scholar Previous article Next article
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
einspringen完成签到,获得积分10
刚刚
刚刚
刚刚
研友_xnEOX8发布了新的文献求助60
1秒前
斯文败类应助虚心的幻巧采纳,获得10
1秒前
1秒前
陈吉止发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
莱布尼兹手稿完成签到,获得积分10
3秒前
丘比特应助大喇叭啦啦啦采纳,获得10
3秒前
天上的云在偷偷看你完成签到,获得积分10
4秒前
4秒前
虚心的芹发布了新的文献求助10
4秒前
wing发布了新的文献求助10
5秒前
masterwill发布了新的文献求助10
5秒前
Drmu完成签到,获得积分20
6秒前
kuiuk发布了新的文献求助20
6秒前
lxl1996发布了新的文献求助10
6秒前
顾矜应助林林采纳,获得10
7秒前
千陽完成签到 ,获得积分10
8秒前
8秒前
9秒前
阿桔发布了新的文献求助10
9秒前
11秒前
11秒前
Lmy完成签到,获得积分10
12秒前
Winky完成签到 ,获得积分10
13秒前
ChatGPT发布了新的文献求助10
13秒前
打打应助dudu不吃榴莲采纳,获得10
14秒前
Akim应助快乐小子采纳,获得10
14秒前
14秒前
wuyany33发布了新的文献求助10
14秒前
我爱写论文完成签到,获得积分10
15秒前
可爱睫毛发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
桐桐应助77采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577789
求助须知:如何正确求助?哪些是违规求助? 3996987
关于积分的说明 12373945
捐赠科研通 3670961
什么是DOI,文献DOI怎么找? 2023136
邀请新用户注册赠送积分活动 1057189
科研通“疑难数据库(出版商)”最低求助积分说明 944157