推论
计算机科学
快照(计算机存储)
可扩展性
磁共振弥散成像
随机游动
支化(高分子化学)
统计物理学
算法
生物
人工智能
理论计算机科学
物理
数学
统计
化学
数据库
操作系统
放射科
磁共振成像
医学
有机化学
作者
Laleh Haghverdi,Maren Büttner,F. Alexander Wolf,Florian Buettner,Fabian J. Theis
出处
期刊:Nature Methods
[Springer Nature]
日期:2016-08-29
卷期号:13 (10): 845-848
被引量:1120
摘要
Diffusion pseudotime (DPT) enables robust and scalable inference of cellular trajectories, branching events, metastable states and underlying gene dynamics from snapshot single-cell gene expression data. The temporal order of differentiating cells is intrinsically encoded in their single-cell expression profiles. We describe an efficient way to robustly estimate this order according to diffusion pseudotime (DPT), which measures transitions between cells using diffusion-like random walks. Our DPT software implementations make it possible to reconstruct the developmental progression of cells and identify transient or metastable states, branching decisions and differentiation endpoints.
科研通智能强力驱动
Strongly Powered by AbleSci AI