清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Brain tumor classification using the fused features extracted from expanded tumor region

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 脑瘤 感兴趣区域 融合 支持向量机 残差神经网络 深度学习 病理 语言学 医学 哲学
作者
Coşku Öksüz,Oğuzhan Urhan,M. Kemal Güllü
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:72: 103356-103356 被引量:48
标识
DOI:10.1016/j.bspc.2021.103356
摘要

In this study, a brain tumor classification method using the fusion of deep and shallow features is proposed to distinguish between meningioma, glioma, pituitary tumor types and to predict the 1p/19q co-deletion status of LGG tumors. Brain tumors can be located in a different region of the brain, and the texture of the surrounding tissues may also vary. Therefore, the inclusion of surrounding tissues into the tumor region (ROI expansion) can make the features more distinctive. In this work, pre-trained AlexNet, ResNet-18, GoogLeNet, and ShuffleNet networks are used to extract deep features from the tumor regions including its surrounding tissues. Even though the deep features are extremely important in classification, some low-level information regarding tumors may be lost as the network deepens. Accordingly, a shallow network is designed to learn low-level information. Next, in order to compensate the information loss, deep features and shallow features are fused. SVM and k-NN classifiers are trained using the fused feature sets. Experimental results achieved on two publicly available data sets demonstrate that using the feature fusion and the ROI expansion at the same time improves the average sensitivity by about 11.72% (ROI expansion: 8.97%, feature fusion: 2.75%). These results confirm the assumption that the tissues surrounding the tumor region carry distinctive information. Not only that, the missing low-level information can be compensated thanks to the feature fusion. Moreover, competitive results are achieved against state-of-the-art studies when the ResNet-18 is used as the deep feature extractor of our classification framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7秒前
9秒前
DSUNNY完成签到 ,获得积分10
18秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
852应助科研通管家采纳,获得10
32秒前
忘忧Aquarius完成签到,获得积分10
37秒前
貔貅完成签到 ,获得积分10
37秒前
南苏发布了新的文献求助10
40秒前
46秒前
WenJun完成签到,获得积分10
48秒前
56秒前
1分钟前
科研通AI5应助水天一色采纳,获得10
1分钟前
南苏完成签到 ,获得积分20
1分钟前
村口的帅老头完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
水天一色完成签到,获得积分10
1分钟前
www258357完成签到,获得积分10
1分钟前
1分钟前
水天一色发布了新的文献求助10
1分钟前
Alisha完成签到,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Liufgui应助乏味采纳,获得10
1分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
光亮静槐完成签到 ,获得积分10
3分钟前
Fern发布了新的文献求助30
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
Liufgui应助紫熊采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983