亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics-based prediction of hemorrhage expansion among patients with thrombolysis/thrombectomy related-hemorrhagic transformation using machine learning

医学 溶栓 接收机工作特性 逻辑回归 Lasso(编程语言) 过采样 随机森林 人工智能 曲线下面积 放射科 内科学 计算机科学 计算机网络 万维网 心肌梗塞 带宽(计算)
作者
Junfeng Liu,Wendan Tao,Zhetao Wang,Xinyue Chen,Bo Wu,Ming Liu
出处
期刊:Therapeutic Advances in Neurological Disorders [SAGE]
卷期号:14: 175628642110600-175628642110600 被引量:14
标识
DOI:10.1177/17562864211060029
摘要

Introduction: Patients with hemorrhagic transformation (HT) were reported to have hemorrhage expansion. However, identification these patients with high risk of hemorrhage expansion has not been well studied. Objectives: We aimed to develop a radiomic score to predict hemorrhage expansion after HT among patients treated with thrombolysis/thrombectomy during acute phase of ischemic stroke. Methods: A total of 104 patients with HT after reperfusion treatment from the West China hospital, Sichuan University, were retrospectively included in this study between 1 January 2012 and 31 December 2020. The preprocessed initial non-contrast-enhanced computed tomography (NECT) imaging brain images were used for radiomic feature extraction. A synthetic minority oversampling technique (SMOTE) was applied to the original data set. The after-SMOTE data set was randomly split into training and testing cohorts with an 8:2 ratio by a stratified random sampling method. The least absolute shrinkage and selection operator (LASSO) regression were applied to identify candidate radiomic features and construct the radiomic score. The performance of the score was evaluated by receiver operating characteristic (ROC) analysis and a calibration curve. Decision curve analysis (DCA) was performed to evaluate the clinical value of the model. Results: Among the 104 patients, 17 patients were identified with hemorrhage expansion after HT detection. A total of 154 candidate predictors were extracted from NECT images and five optimal features were ultimately included in the development of the radiomic score by using logistic regression machine-learning approach. The radiomic score showed good performance with high area under the curves in both the training data set (0.91, sensitivity: 0.83; specificity: 0.89), test data set (0.87, sensitivity: 0.60; specificity: 0.85), and original data set (0.82, sensitivity: 0.77; specificity: 0.78). The calibration curve and DCA also indicated that there was a high accuracy and clinical usefulness of the radiomic score for hemorrhage expansion prediction after HT. Conclusions: The currently established NECT-based radiomic score is valuable in predicting hemorrhage expansion after HT among patients treated with reperfusion treatment after ischemic stroke, which may aid clinicians in determining patients with HT who are most likely to benefit from anti-expansion treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
慕青应助青儿采纳,获得10
17秒前
22秒前
jinyy发布了新的文献求助10
24秒前
Anna Jenna发布了新的文献求助10
28秒前
29秒前
39秒前
jinyy完成签到,获得积分20
40秒前
Anna Jenna完成签到,获得积分10
41秒前
青儿发布了新的文献求助10
44秒前
希望天下0贩的0应助jinyy采纳,获得10
45秒前
程克勤完成签到 ,获得积分10
46秒前
47秒前
51秒前
青儿完成签到,获得积分10
52秒前
huanglu发布了新的文献求助10
56秒前
非洲大象发布了新的文献求助100
1分钟前
饱满跳跳糖完成签到,获得积分10
1分钟前
李健应助去去去去采纳,获得10
1分钟前
1分钟前
SciGPT应助dd采纳,获得10
1分钟前
喝可乐的萝卜兔完成签到 ,获得积分10
1分钟前
隐形问萍发布了新的文献求助10
1分钟前
FashionBoy应助fang采纳,获得10
1分钟前
熊仔仔熊完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
hesurina完成签到,获得积分10
2分钟前
2分钟前
粥粥舟发布了新的文献求助10
2分钟前
大模型应助优雅的涵瑶采纳,获得10
2分钟前
2分钟前
粥粥舟完成签到,获得积分10
3分钟前
科研剧中人完成签到,获得积分0
3分钟前
3分钟前
3分钟前
春曙为最发布了新的文献求助20
3分钟前
vg完成签到 ,获得积分10
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793553
关于积分的说明 7806860
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314