Radiomics-based prediction of hemorrhage expansion among patients with thrombolysis/thrombectomy related-hemorrhagic transformation using machine learning

医学 溶栓 接收机工作特性 逻辑回归 Lasso(编程语言) 过采样 随机森林 人工智能 曲线下面积 放射科 内科学 计算机科学 计算机网络 万维网 心肌梗塞 带宽(计算)
作者
Junfeng Liu,Wendan Tao,Zhetao Wang,Xinyue Chen,Bo Wu,Ming Liu
出处
期刊:Therapeutic Advances in Neurological Disorders [SAGE Publishing]
卷期号:14: 175628642110600-175628642110600 被引量:14
标识
DOI:10.1177/17562864211060029
摘要

Introduction: Patients with hemorrhagic transformation (HT) were reported to have hemorrhage expansion. However, identification these patients with high risk of hemorrhage expansion has not been well studied. Objectives: We aimed to develop a radiomic score to predict hemorrhage expansion after HT among patients treated with thrombolysis/thrombectomy during acute phase of ischemic stroke. Methods: A total of 104 patients with HT after reperfusion treatment from the West China hospital, Sichuan University, were retrospectively included in this study between 1 January 2012 and 31 December 2020. The preprocessed initial non-contrast-enhanced computed tomography (NECT) imaging brain images were used for radiomic feature extraction. A synthetic minority oversampling technique (SMOTE) was applied to the original data set. The after-SMOTE data set was randomly split into training and testing cohorts with an 8:2 ratio by a stratified random sampling method. The least absolute shrinkage and selection operator (LASSO) regression were applied to identify candidate radiomic features and construct the radiomic score. The performance of the score was evaluated by receiver operating characteristic (ROC) analysis and a calibration curve. Decision curve analysis (DCA) was performed to evaluate the clinical value of the model. Results: Among the 104 patients, 17 patients were identified with hemorrhage expansion after HT detection. A total of 154 candidate predictors were extracted from NECT images and five optimal features were ultimately included in the development of the radiomic score by using logistic regression machine-learning approach. The radiomic score showed good performance with high area under the curves in both the training data set (0.91, sensitivity: 0.83; specificity: 0.89), test data set (0.87, sensitivity: 0.60; specificity: 0.85), and original data set (0.82, sensitivity: 0.77; specificity: 0.78). The calibration curve and DCA also indicated that there was a high accuracy and clinical usefulness of the radiomic score for hemorrhage expansion prediction after HT. Conclusions: The currently established NECT-based radiomic score is valuable in predicting hemorrhage expansion after HT among patients treated with reperfusion treatment after ischemic stroke, which may aid clinicians in determining patients with HT who are most likely to benefit from anti-expansion treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心靖雁完成签到,获得积分10
1秒前
狄百招发布了新的文献求助10
1秒前
2秒前
yangxt-iga完成签到,获得积分20
2秒前
2秒前
2秒前
wj发布了新的文献求助10
3秒前
天博发布了新的文献求助10
3秒前
英俊的铭应助笑场采纳,获得10
3秒前
慕青应助柯善鹏采纳,获得10
4秒前
4秒前
可靠橘子完成签到,获得积分10
4秒前
5秒前
搜集达人应助ll采纳,获得10
5秒前
LY完成签到,获得积分10
5秒前
delia发布了新的文献求助10
6秒前
领导范儿应助myp采纳,获得10
6秒前
cocu117发布了新的文献求助10
6秒前
6秒前
西门追命发布了新的文献求助40
6秒前
天真琳完成签到,获得积分10
7秒前
7秒前
橘色森林完成签到,获得积分10
7秒前
gu发布了新的文献求助30
7秒前
开心浩阑应助瘦瘦采纳,获得20
8秒前
沉静晓啸完成签到,获得积分10
9秒前
9秒前
wj完成签到,获得积分10
9秒前
ccmxigua完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
wang_yi发布了新的文献求助10
10秒前
10秒前
10秒前
自信的高山完成签到,获得积分10
10秒前
青青草发布了新的文献求助10
10秒前
一坤完成签到,获得积分10
10秒前
水水完成签到,获得积分10
10秒前
10秒前
tuya完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110