亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Transfer Learning Based Multiway Feature Pyramid Network for Object Detection in Images

帕斯卡(单位) 计算机科学 最小边界框 人工智能 骨干网 棱锥(几何) 跳跃式监视 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 图像(数学) 特征提取 目标检测 特征学习 人工神经网络 计算机视觉 对象(语法) 网络体系结构 学习迁移 上下文图像分类 数学 哲学 语言学 程序设计语言 计算机网络 几何学
作者
Parvinder Kaur,Baljit Singh Khehra,Amar Partap Singh Pharwaha
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-13 被引量:1
标识
DOI:10.1155/2021/5565561
摘要

Object detection is being widely used in many fields, and therefore, the demand for more accurate and fast methods for object detection is also increasing. In this paper, we propose a method for object detection in digital images that is more accurate and faster. The proposed model is based on Single-Stage Multibox Detector (SSD) architecture. This method creates many anchor boxes of various aspect ratios based on the backbone network and multiscale feature network and calculates the classes and balances of the anchor boxes to detect objects at various scales. Instead of the VGG16-based deep transfer learning model in SSD, we have used a more efficient base network, i.e., EfficientNet. Detection of objects of different sizes is still an inspiring task. We have used Multiway Feature Pyramid Network (MFPN) to solve this problem. The input to the base network is given to MFPN, and then, the fused features are given to bounding box prediction and class prediction networks. Softer-NMS is applied instead of NMS in SSD to reduce the number of bounding boxes gently. The proposed method is validated on MSCOCO 2017, PASCAL VOC 2007, and PASCAL VOC 2012 datasets and compared to existing state-of-the-art techniques. Our method shows better detection quality in terms of mean Average Precision (mAP).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
6秒前
18秒前
高大又蓝发布了新的文献求助20
23秒前
善学以致用应助高大又蓝采纳,获得10
34秒前
满意的伊完成签到,获得积分10
44秒前
故酒应助Wei采纳,获得10
55秒前
1分钟前
excelblade发布了新的文献求助10
1分钟前
2分钟前
望远Arena发布了新的文献求助30
2分钟前
excelblade完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助望远Arena采纳,获得10
3分钟前
欣欣完成签到 ,获得积分10
3分钟前
慕青应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
望远Arena发布了新的文献求助10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
pokoyo完成签到,获得积分10
6分钟前
Owen应助望远Arena采纳,获得30
6分钟前
小蘑菇应助Marciu33采纳,获得10
7分钟前
8分钟前
8分钟前
望远Arena发布了新的文献求助30
8分钟前
zzy完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
10分钟前
10分钟前
js发布了新的文献求助10
10分钟前
js完成签到,获得积分10
10分钟前
10分钟前
xiaoguang li完成签到 ,获得积分10
10分钟前
深情安青应助闪闪翼采纳,获得10
11分钟前
科研通AI5应助望远Arena采纳,获得10
11分钟前
Kasom完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
K.I.D完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5007892
求助须知:如何正确求助?哪些是违规求助? 4250652
关于积分的说明 13243529
捐赠科研通 4051242
什么是DOI,文献DOI怎么找? 2216248
邀请新用户注册赠送积分活动 1226047
关于科研通互助平台的介绍 1147389