Rapid hydraulic collapse as cause of drought-induced mortality in conifers.

环境科学 气候变化 洪水(心理学)
作者
Matthias Arend,Roman M. Link,Rachel Patthey,Günter Hoch,Bernhard Schuldt,Ansgar Kahmen
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (16) 被引量:4
标识
DOI:10.1073/pnas.2025251118
摘要

Understanding the vulnerability of trees to drought-induced mortality is key to predicting the fate of forests in a future climate with more frequent and intense droughts, although the underlying mechanisms are difficult to study in adult trees. Here, we explored the dynamic changes of water relations and limits of hydraulic function in dying adults of Norway spruce (Picea abies L.) during the progression of the record-breaking 2018 Central European drought. In trees on the trajectory to drought-induced mortality, we observed rapid, nonlinear declines of xylem pressure that commenced at the early onset of xylem cavitation and caused a complete loss of xylem hydraulic conductance within a very short time. We also observed severe depletions of nonstructural carbohydrates, though carbon starvation could be ruled out as the cause of the observed tree death, as both dying and surviving trees showed these metabolic limitations. Our observations provide striking field-based evidence for fast dehydration and hydraulic collapse as the cause of drought-induced mortality in adult Norway spruce. The nonlinear decline of tree water relations suggests that considering the temporal dynamics of dehydration is critical for predicting tree death. The collapse of the hydraulic system within a short time demonstrates that trees can rapidly be pushed out of the zone of hydraulic safety during the progression of a severe drought. In summary, our findings point toward a higher mortality risk for Norway spruce than previously assumed, which is in line with current reports of unprecedented levels of drought-induced mortality in this major European tree species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zezezee发布了新的文献求助10
刚刚
复杂的问玉完成签到,获得积分20
1秒前
2秒前
2秒前
睡睡完成签到,获得积分10
2秒前
3秒前
4秒前
所所应助饕餮采纳,获得10
4秒前
平淡小凝发布了新的文献求助10
4秒前
nihaoxiaoai完成签到,获得积分10
5秒前
完美世界应助英俊的汉堡采纳,获得10
5秒前
爱静静应助hehe采纳,获得10
6秒前
九城发布了新的文献求助20
6秒前
斯文败类应助高君奇采纳,获得10
6秒前
小二郎应助特兰克斯采纳,获得10
6秒前
mojomars发布了新的文献求助10
6秒前
吃嘛嘛香完成签到,获得积分10
6秒前
wqy发布了新的文献求助10
7秒前
天天快乐应助新的心跳采纳,获得10
7秒前
Orange应助有益采纳,获得10
7秒前
9秒前
爆米花应助marinemiao采纳,获得10
9秒前
9秒前
招财不肥发布了新的文献求助10
10秒前
网安真难T_T完成签到,获得积分10
10秒前
大土豆子完成签到,获得积分10
11秒前
11秒前
甜甜醉波发布了新的文献求助10
12秒前
CodeCraft应助jy采纳,获得10
12秒前
领导范儿应助睡睡采纳,获得10
12秒前
哈哈完成签到 ,获得积分10
13秒前
Holleay123发布了新的文献求助10
14秒前
14秒前
15秒前
苏卿应助kento采纳,获得100
15秒前
小马甲应助满意之玉采纳,获得10
15秒前
16秒前
Jing完成签到,获得积分10
17秒前
饕餮发布了新的文献求助10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808