MDN: A Deep Maximization-Differentiation Network for Spatio-Temporal Depression Detection

过度拟合 最大化 面部表情 判别式 计算机科学 编码(集合论) 人工智能 深度学习 模式识别(心理学) 机器学习 数学 数学优化 人工神经网络 集合(抽象数据类型) 程序设计语言
作者
Wheidima Carneiro de Melo,Éric Granger,Miguel Bordallo López
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 578-590 被引量:65
标识
DOI:10.1109/taffc.2021.3072579
摘要

Deep learning (DL) models have been successfully applied in video-based affective computing, allowing, for instance, to recognize emotions and mood, or to estimate the intensity of pain or stress of individuals based on their facial expressions. Despite the recent advances with state-of-the-art DL models for spatio-temporal recognition of facial expressions associated with depressive behaviour, some key challenges remain in the cost-effective application of 3D-CNNs: (1) 3D convolutions usually employ structures with fixed temporal depth that decreases the potential to extract discriminative representations due to the usually small difference of spatio-temporal variations along different depression levels; and (2) the computational complexity of these models with consequent susceptibility to overfitting. To address these challenges, we propose a novel DL architecture called the Maximization and Differentiation Network (MDN) in order to effectively represent facial expression variations that are relevant for depression assessment. The MDN, operating without 3D convolutions, explores multiscale temporal information using a maximization block that captures smooth facial variations and a difference block that encodes sudden facial variations. Extensive experiments using our proposed MDN with models with 100 and 152 layers result in improved performance while reducing the number of parameters by more than $3\times$ when compared with 3D ResNet models. Our model also outperforms other 3D models and achieves state-of-the-art results for depression detection. Code available at: https://github.com/wheidima/MDN .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songxia发布了新的文献求助10
1秒前
Truman发布了新的文献求助20
1秒前
1秒前
完美世界应助补丁采纳,获得30
2秒前
会翻滚的水晶帝王皮皮虾完成签到,获得积分10
2秒前
3秒前
平常雨泽发布了新的文献求助10
3秒前
蓝胖子发布了新的文献求助10
3秒前
刘小小发布了新的文献求助10
3秒前
坚强的代曼完成签到,获得积分10
3秒前
ZMF完成签到 ,获得积分20
4秒前
赵阿赵完成签到,获得积分10
4秒前
酷波er应助CCCr采纳,获得10
4秒前
学生完成签到,获得积分10
4秒前
5秒前
动听紫寒发布了新的文献求助30
5秒前
5秒前
7秒前
7秒前
科研通AI2S应助qzj采纳,获得10
7秒前
songxia完成签到,获得积分10
7秒前
科研通AI5应助哈哈哈哈采纳,获得10
7秒前
huanghuahua发布了新的文献求助10
8秒前
学习中勿扰完成签到,获得积分20
8秒前
9秒前
沈海完成签到,获得积分10
9秒前
9秒前
搂猫睡觉的鱼完成签到,获得积分20
9秒前
今后应助zsh采纳,获得10
10秒前
彼岸花发布了新的文献求助10
10秒前
11秒前
12秒前
黄大师发布了新的文献求助10
12秒前
顾矜应助melon采纳,获得10
12秒前
隐形曼青应助平常雨泽采纳,获得10
13秒前
充电宝应助搂猫睡觉的鱼采纳,获得10
13秒前
情怀应助zzz采纳,获得10
14秒前
科研通AI5应助zzz采纳,获得10
14秒前
科研通AI5应助zzz采纳,获得10
14秒前
善学以致用应助zzz采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3584452
求助须知:如何正确求助?哪些是违规求助? 3153442
关于积分的说明 9497040
捐赠科研通 2856039
什么是DOI,文献DOI怎么找? 1569842
邀请新用户注册赠送积分活动 735726
科研通“疑难数据库(出版商)”最低求助积分说明 721336