材料科学
电介质
晶界
介电损耗
耗散因子
介电常数
陶瓷
相界
粒度
复合材料
兴奋剂
凝聚态物理
相(物质)
微观结构
光电子学
化学
物理
有机化学
作者
Jakkree Boonlakhorn,Narong Chanlek,Jedsada Manyam,Sriprajak Krongsuk,Prasit Thongbai,Pornjuk Srepusharawoot
标识
DOI:10.1016/j.ceramint.2021.04.248
摘要
CaCu3-xZnxTi4O12 ceramics (x = 0, 0.05, 0.10) were successfully prepared by a conventional solid-state reaction method. Their structural and dielectric properties, and nonlinear electrical response were systematically inspected. The X-ray diffraction results indicated that single-phase CaCu3Ti4O12 (JCPDS no. 75–2188) was obtained in all sintered ceramics. Changes in the lattice parameter are well-matched with the computational result, indicating an occupation of Zn2+ doping ions at Cu2+ sites. The overall tendency shows that the average grain size decreases when x increases. Due to a decrease in overall grain size, the dielectric permittivity of CaCu3-xZnxTi4O12 decreases expressively. Despite a decrease in the dielectric permittivity, it remains at a high level in the doped ceramics (~3,406–11,441). Besides retention in high dielectric permittivity, the dielectric loss tangent of x = 0.05 and 0.10 (~0.074–0.076) is lower than that of x = 0 (~0.227). A reduction in the dielectric loss tangent in the CaCu3-xZnxTi4O12 ceramics is closely associated with the enhanced grain boundary response. Increases in grain boundary resistance, breakdown electric field, and conduction activation energy of grain boundary as a result of Zn2+ substitution are shown to play a crucial role in improved grain boundary response. Furthermore, the XPS analysis shows the existence of Cu+/Cu2+ and Ti3+/Ti4+, indicating charge compensation due to the loss of oxygen lattice. Based on all results of this work, enhanced dielectric properties of the Zn-doped CCTO can be explained using the internal barrier layer capacitor model.
科研通智能强力驱动
Strongly Powered by AbleSci AI