Depression Analysis and Recognition Based on Functional Near-Infrared Spectroscopy

功能近红外光谱 萧条(经济学) 特征提取 特征(语言学) 计算机科学 人工智能 相关性 心理学 认知 模式识别(心理学) 精神科 前额叶皮质 数学 宏观经济学 经济 哲学 语言学 几何学
作者
Rui Wang,Yixue Hao,Yu Qiao,Min Chen,Iztok Humar,Giancarlo Fortino
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 4289-4299 被引量:10
标识
DOI:10.1109/jbhi.2021.3076762
摘要

Depression is the result of a complex interaction of social, psychological and physiological elements. Research into the brain disorders of patients suffering from depression can help doctors to understand the pathogenesis of depression and facilitate its diagnosis and treatment. Functional near-infrared spectroscopy (fNIRS) is a non-invasive approach to the detection of brain functions and activities. In this paper, a comprehensive fNIRS-based depression-processing architecture, including the layers of source, feature and model, is first established to guide the deep modeling for fNIRS. In view of the complexity of depression, we propose a methodology in the time and frequency domains for feature extraction and deep neural networks for depression recognition combined with current research. It is found that compared to non-depression people, patients with depression have a weaker encephalic area connectivity and lower level of activation in the prefrontal lobe during brain activity. Finally, based on raw data, manual features and channel correlations, the AlexNet model shows the best performance, especially in terms of the correlation features and presents an accuracy rate of 0.90 and a precision rate of 0.91, which is higher than ResNet18 and machine-learning algorithms on other data. Therefore, the correlation of brain regions can effectively recognize depression (from cases of non-depression), making it significant for the recognition of brain functions in the clinical diagnosis and treatment of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pathway完成签到,获得积分10
1秒前
1秒前
温暖焱完成签到,获得积分20
1秒前
何仁杰发布了新的文献求助10
1秒前
星辰大海应助leisure采纳,获得30
1秒前
2秒前
曾阿牛发布了新的文献求助10
2秒前
momo完成签到,获得积分10
2秒前
繁荣的听南完成签到,获得积分10
3秒前
shuang0116应助li采纳,获得10
4秒前
YYY完成签到,获得积分10
4秒前
Garry完成签到,获得积分10
5秒前
6秒前
wanci应助曾阿牛采纳,获得10
7秒前
HC完成签到,获得积分10
8秒前
Orange应助活力的天空采纳,获得10
8秒前
焦小强发布了新的文献求助10
8秒前
8秒前
cxlhzq完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
秀丽烨霖应助倒霉孩子采纳,获得10
10秒前
彭于彦祖应助VISIN采纳,获得30
11秒前
朴实的依霜完成签到,获得积分10
12秒前
搞怪迎夏应助张小鱼采纳,获得10
12秒前
bkagyin应助杨嘟嘟采纳,获得10
12秒前
cai发布了新的文献求助10
12秒前
木湾完成签到,获得积分10
12秒前
12秒前
Dr终年完成签到,获得积分10
12秒前
无味完成签到 ,获得积分10
13秒前
13秒前
Navy发布了新的文献求助10
14秒前
SciGPT应助佳芸采纳,获得10
14秒前
bean完成签到,获得积分10
14秒前
14秒前
奇葩奇葩一朵花完成签到,获得积分10
15秒前
蔡文鸡腿子关注了科研通微信公众号
16秒前
快乐小马完成签到 ,获得积分10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230694
求助须知:如何正确求助?哪些是违规求助? 2878026
关于积分的说明 8204126
捐赠科研通 2545452
什么是DOI,文献DOI怎么找? 1375124
科研通“疑难数据库(出版商)”最低求助积分说明 647289
邀请新用户注册赠送积分活动 622376