Deep Learning-Based ECG-Free Cardiac Navigation for Multi-Dimensional and Motion-Resolved Continuous Magnetic Resonance Imaging

人工智能 计算机科学 磁共振成像 计算机视觉 工作流程 深度学习 迭代重建 医学影像学 模式识别(心理学) 放射科 医学 数据库
作者
Elisabeth Hoppe,Jens Wetzl,Seung Su Yoon,Mario Bacher,Philipp Roser,Bernhard Stimpel,Alexander Preuhs,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2105-2117 被引量:10
标识
DOI:10.1109/tmi.2021.3073091
摘要

For the clinical assessment of cardiac vitality, time-continuous tomographic imaging of the heart is used. To further detect e.g., pathological tissue, multiple imaging contrasts enable a thorough diagnosis using magnetic resonance imaging (MRI). For this purpose, time-continous and multi-contrast imaging protocols were proposed. The acquired signals are binned using navigation approaches for a motion-resolved reconstruction. Mostly, external sensors such as electrocardiograms (ECG) are used for navigation, leading to additional workflow efforts. Recent sensor-free approaches are based on pipelines requiring prior knowledge, e.g., typical heart rates. We present a sensor-free, deep learning-based navigation that diminishes the need for manual feature engineering or the necessity of prior knowledge compared to previous works. A classifier is trained to estimate the R-wave timepoints in the scan directly from the imaging data. Our approach is evaluated on 3-D protocols for continuous cardiac MRI, acquired in-vivo and free-breathing with single or multiple imaging contrasts. We achieve an accuracy of > 98% on previously unseen subjects, and a well comparable image quality with the state-of-the-art ECG-based reconstruction. Our method enables an ECG-free workflow for continuous cardiac scans with simultaneous anatomic and functional imaging with multiple contrasts. It can be potentially integrated without adapting the sampling scheme to other continuous sequences by using the imaging data for navigation and reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
蒲云海发布了新的文献求助10
3秒前
4秒前
SciGPT应助痴情的蒙蒙采纳,获得10
5秒前
Tsuki发布了新的文献求助10
6秒前
打打应助丑小鸭采纳,获得10
9秒前
永和发布了新的文献求助10
10秒前
12秒前
百里守约完成签到 ,获得积分10
12秒前
12秒前
求助发布了新的文献求助10
12秒前
ll完成签到 ,获得积分10
13秒前
隐形曼青应助痴情的蒙蒙采纳,获得10
14秒前
吴晗硕查文献完成签到 ,获得积分10
15秒前
端庄一刀发布了新的文献求助10
18秒前
哎健身完成签到 ,获得积分10
20秒前
21秒前
汉堡包应助jlk采纳,获得10
24秒前
烟花应助ccc采纳,获得10
25秒前
25秒前
bkagyin应助永和采纳,获得10
26秒前
白桃完成签到,获得积分0
27秒前
29秒前
29秒前
gg发布了新的文献求助10
32秒前
ccc发布了新的文献求助10
34秒前
早安发布了新的文献求助50
34秒前
lzp完成签到 ,获得积分10
35秒前
35秒前
yang_keai完成签到 ,获得积分10
36秒前
mimi完成签到,获得积分10
37秒前
苏习习发布了新的文献求助10
40秒前
42秒前
Bravacristina完成签到,获得积分10
43秒前
43秒前
Huobol完成签到,获得积分10
44秒前
44秒前
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478