已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based ECG-Free Cardiac Navigation for Multi-Dimensional and Motion-Resolved Continuous Magnetic Resonance Imaging

人工智能 计算机科学 磁共振成像 计算机视觉 工作流程 深度学习 迭代重建 医学影像学 模式识别(心理学) 放射科 医学 数据库
作者
Elisabeth Hoppe,Jens Wetzl,Seung Su Yoon,Mario Bacher,Philipp Roser,Bernhard Stimpel,Alexander Preuhs,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2105-2117 被引量:10
标识
DOI:10.1109/tmi.2021.3073091
摘要

For the clinical assessment of cardiac vitality, time-continuous tomographic imaging of the heart is used. To further detect e.g., pathological tissue, multiple imaging contrasts enable a thorough diagnosis using magnetic resonance imaging (MRI). For this purpose, time-continous and multi-contrast imaging protocols were proposed. The acquired signals are binned using navigation approaches for a motion-resolved reconstruction. Mostly, external sensors such as electrocardiograms (ECG) are used for navigation, leading to additional workflow efforts. Recent sensor-free approaches are based on pipelines requiring prior knowledge, e.g., typical heart rates. We present a sensor-free, deep learning-based navigation that diminishes the need for manual feature engineering or the necessity of prior knowledge compared to previous works. A classifier is trained to estimate the R-wave timepoints in the scan directly from the imaging data. Our approach is evaluated on 3-D protocols for continuous cardiac MRI, acquired in-vivo and free-breathing with single or multiple imaging contrasts. We achieve an accuracy of > 98% on previously unseen subjects, and a well comparable image quality with the state-of-the-art ECG-based reconstruction. Our method enables an ECG-free workflow for continuous cardiac scans with simultaneous anatomic and functional imaging with multiple contrasts. It can be potentially integrated without adapting the sampling scheme to other continuous sequences by using the imaging data for navigation and reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可可钳发布了新的文献求助30
1秒前
汉堡包应助shier采纳,获得10
4秒前
鹿小新完成签到 ,获得积分0
4秒前
5秒前
依桉完成签到 ,获得积分10
6秒前
mumu完成签到,获得积分10
6秒前
斗罗大陆完成签到,获得积分10
7秒前
7秒前
温馨家园完成签到 ,获得积分10
8秒前
阿朱完成签到 ,获得积分10
8秒前
Ye发布了新的文献求助10
9秒前
9秒前
伏尾窗的猫完成签到,获得积分20
9秒前
Milesma发布了新的文献求助10
10秒前
11秒前
凶狠的嚣关注了科研通微信公众号
11秒前
燕儿完成签到 ,获得积分20
12秒前
今天晚上早点睡完成签到 ,获得积分10
13秒前
雪中完成签到 ,获得积分10
15秒前
ceicic发布了新的文献求助10
15秒前
晴子发布了新的文献求助10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
Tanya47应助科研通管家采纳,获得10
16秒前
Tanya47应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
底层特律应助科研通管家采纳,获得10
16秒前
Tanya47应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
烟花应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
16秒前
Tanya47应助科研通管家采纳,获得10
16秒前
dusk完成签到 ,获得积分10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759