Deep Learning-Based ECG-Free Cardiac Navigation for Multi-Dimensional and Motion-Resolved Continuous Magnetic Resonance Imaging

人工智能 计算机科学 磁共振成像 计算机视觉 工作流程 深度学习 迭代重建 医学影像学 模式识别(心理学) 放射科 医学 数据库
作者
Elisabeth Hoppe,Jens Wetzl,Seung Su Yoon,Mario Bacher,Philipp Roser,Bernhard Stimpel,Alexander Preuhs,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2105-2117 被引量:10
标识
DOI:10.1109/tmi.2021.3073091
摘要

For the clinical assessment of cardiac vitality, time-continuous tomographic imaging of the heart is used. To further detect e.g., pathological tissue, multiple imaging contrasts enable a thorough diagnosis using magnetic resonance imaging (MRI). For this purpose, time-continous and multi-contrast imaging protocols were proposed. The acquired signals are binned using navigation approaches for a motion-resolved reconstruction. Mostly, external sensors such as electrocardiograms (ECG) are used for navigation, leading to additional workflow efforts. Recent sensor-free approaches are based on pipelines requiring prior knowledge, e.g., typical heart rates. We present a sensor-free, deep learning-based navigation that diminishes the need for manual feature engineering or the necessity of prior knowledge compared to previous works. A classifier is trained to estimate the R-wave timepoints in the scan directly from the imaging data. Our approach is evaluated on 3-D protocols for continuous cardiac MRI, acquired in-vivo and free-breathing with single or multiple imaging contrasts. We achieve an accuracy of > 98% on previously unseen subjects, and a well comparable image quality with the state-of-the-art ECG-based reconstruction. Our method enables an ECG-free workflow for continuous cardiac scans with simultaneous anatomic and functional imaging with multiple contrasts. It can be potentially integrated without adapting the sampling scheme to other continuous sequences by using the imaging data for navigation and reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ty_1029发布了新的文献求助10
1秒前
FashionBoy应助非洲三巨头采纳,获得10
2秒前
2秒前
A晨发布了新的文献求助10
4秒前
5秒前
CCUT-LX发布了新的文献求助10
5秒前
江风发布了新的文献求助10
5秒前
6秒前
Judy完成签到 ,获得积分10
7秒前
7秒前
姜大头完成签到,获得积分10
8秒前
ws完成签到,获得积分10
9秒前
avoidant发布了新的文献求助10
9秒前
9秒前
Atopos发布了新的文献求助10
10秒前
10秒前
zhaimen完成签到 ,获得积分10
10秒前
10秒前
12秒前
lay发布了新的文献求助10
12秒前
13秒前
ws发布了新的文献求助30
13秒前
14秒前
15秒前
16秒前
nanxi88完成签到,获得积分10
16秒前
orixero应助小小采纳,获得10
16秒前
17秒前
顾天与完成签到,获得积分10
17秒前
Ty_1029完成签到,获得积分10
18秒前
大气凝云发布了新的文献求助10
18秒前
li完成签到,获得积分10
18秒前
19秒前
Atopos完成签到,获得积分10
19秒前
爱听歌的石头完成签到 ,获得积分10
19秒前
19秒前
Cream萱关注了科研通微信公众号
20秒前
CCUT-LX完成签到 ,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721