Deep Learning-Based ECG-Free Cardiac Navigation for Multi-Dimensional and Motion-Resolved Continuous Magnetic Resonance Imaging

人工智能 计算机科学 磁共振成像 计算机视觉 工作流程 深度学习 迭代重建 医学影像学 模式识别(心理学) 放射科 医学 数据库
作者
Elisabeth Hoppe,Jens Wetzl,Seung Su Yoon,Mario Bacher,Philipp Roser,Bernhard Stimpel,Alexander Preuhs,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2105-2117 被引量:10
标识
DOI:10.1109/tmi.2021.3073091
摘要

For the clinical assessment of cardiac vitality, time-continuous tomographic imaging of the heart is used. To further detect e.g., pathological tissue, multiple imaging contrasts enable a thorough diagnosis using magnetic resonance imaging (MRI). For this purpose, time-continous and multi-contrast imaging protocols were proposed. The acquired signals are binned using navigation approaches for a motion-resolved reconstruction. Mostly, external sensors such as electrocardiograms (ECG) are used for navigation, leading to additional workflow efforts. Recent sensor-free approaches are based on pipelines requiring prior knowledge, e.g., typical heart rates. We present a sensor-free, deep learning-based navigation that diminishes the need for manual feature engineering or the necessity of prior knowledge compared to previous works. A classifier is trained to estimate the R-wave timepoints in the scan directly from the imaging data. Our approach is evaluated on 3-D protocols for continuous cardiac MRI, acquired in-vivo and free-breathing with single or multiple imaging contrasts. We achieve an accuracy of > 98% on previously unseen subjects, and a well comparable image quality with the state-of-the-art ECG-based reconstruction. Our method enables an ECG-free workflow for continuous cardiac scans with simultaneous anatomic and functional imaging with multiple contrasts. It can be potentially integrated without adapting the sampling scheme to other continuous sequences by using the imaging data for navigation and reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我想要当富婆完成签到,获得积分10
2秒前
甜甜冰巧发布了新的文献求助10
2秒前
2秒前
许健完成签到 ,获得积分10
3秒前
充电宝应助Puffkten采纳,获得10
3秒前
only完成签到 ,获得积分10
5秒前
怕黑剑封发布了新的文献求助10
5秒前
7秒前
Eon完成签到,获得积分10
7秒前
8秒前
8秒前
令狐秋双完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
江边鸟完成签到 ,获得积分10
10秒前
微笑翠桃完成签到,获得积分20
11秒前
小开心发布了新的文献求助10
11秒前
Eon发布了新的文献求助10
11秒前
姚美阁完成签到 ,获得积分10
12秒前
mufcyang发布了新的文献求助10
13秒前
14秒前
14秒前
Puffkten发布了新的文献求助10
15秒前
与梦随行2011完成签到,获得积分10
15秒前
15秒前
高哈哈哈完成签到,获得积分10
16秒前
yr发布了新的文献求助10
19秒前
20秒前
微笑翠桃发布了新的文献求助10
23秒前
23秒前
马佳音完成签到 ,获得积分10
24秒前
在水一方应助Eon采纳,获得10
24秒前
TB123发布了新的文献求助10
24秒前
26秒前
JHL完成签到 ,获得积分10
26秒前
28秒前
28秒前
黎是叻熠黎完成签到,获得积分10
29秒前
每天必补一科完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714