Deep Learning-Based ECG-Free Cardiac Navigation for Multi-Dimensional and Motion-Resolved Continuous Magnetic Resonance Imaging

人工智能 计算机科学 磁共振成像 计算机视觉 工作流程 深度学习 迭代重建 医学影像学 模式识别(心理学) 放射科 医学 数据库
作者
Elisabeth Hoppe,Jens Wetzl,Seung Su Yoon,Mario Bacher,Philipp Roser,Bernhard Stimpel,Alexander Preuhs,Andreas Maier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2105-2117 被引量:10
标识
DOI:10.1109/tmi.2021.3073091
摘要

For the clinical assessment of cardiac vitality, time-continuous tomographic imaging of the heart is used. To further detect e.g., pathological tissue, multiple imaging contrasts enable a thorough diagnosis using magnetic resonance imaging (MRI). For this purpose, time-continous and multi-contrast imaging protocols were proposed. The acquired signals are binned using navigation approaches for a motion-resolved reconstruction. Mostly, external sensors such as electrocardiograms (ECG) are used for navigation, leading to additional workflow efforts. Recent sensor-free approaches are based on pipelines requiring prior knowledge, e.g., typical heart rates. We present a sensor-free, deep learning-based navigation that diminishes the need for manual feature engineering or the necessity of prior knowledge compared to previous works. A classifier is trained to estimate the R-wave timepoints in the scan directly from the imaging data. Our approach is evaluated on 3-D protocols for continuous cardiac MRI, acquired in-vivo and free-breathing with single or multiple imaging contrasts. We achieve an accuracy of > 98% on previously unseen subjects, and a well comparable image quality with the state-of-the-art ECG-based reconstruction. Our method enables an ECG-free workflow for continuous cardiac scans with simultaneous anatomic and functional imaging with multiple contrasts. It can be potentially integrated without adapting the sampling scheme to other continuous sequences by using the imaging data for navigation and reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达的秀发完成签到,获得积分10
1秒前
hxh发布了新的文献求助10
2秒前
一个西藏发布了新的文献求助10
2秒前
fyukgfdyifotrf完成签到,获得积分10
3秒前
3秒前
dovehanguoge完成签到,获得积分20
4秒前
4秒前
思源应助徐乐采纳,获得10
4秒前
科研通AI6应助www采纳,获得10
5秒前
qian发布了新的文献求助10
5秒前
6秒前
赘婿应助123采纳,获得10
7秒前
9秒前
clover发布了新的文献求助10
9秒前
yyy关注了科研通微信公众号
11秒前
科研通AI6应助Sieg采纳,获得10
11秒前
Mito2009完成签到,获得积分10
12秒前
所所应助企鹅没烦恼采纳,获得10
12秒前
kk发布了新的文献求助10
12秒前
852应助LaLune采纳,获得10
12秒前
12秒前
13秒前
Damon完成签到,获得积分10
13秒前
song发布了新的文献求助10
13秒前
15秒前
18秒前
斯文败类应助NeilJW采纳,获得10
19秒前
斯文败类应助小巧的若云采纳,获得10
20秒前
脑洞疼应助一介书生采纳,获得10
20秒前
22秒前
LaLune发布了新的文献求助10
24秒前
24秒前
DrN发布了新的文献求助10
25秒前
25秒前
passion发布了新的文献求助10
26秒前
28秒前
28秒前
科研小嘛完成签到,获得积分10
29秒前
科研狗完成签到,获得积分10
29秒前
Owen应助自信的海瑶采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355546
求助须知:如何正确求助?哪些是违规求助? 4487473
关于积分的说明 13970113
捐赠科研通 4388096
什么是DOI,文献DOI怎么找? 2410888
邀请新用户注册赠送积分活动 1403438
关于科研通互助平台的介绍 1376951