Risk Prediction of Renal Failure for Chronic Disease Population Based on Electronic Health Record Big Data

肾脏疾病 医学 疾病 人口 糖尿病 重症监护医学 电子健康档案 大数据 血压 内科学 计算机科学 数据挖掘 环境卫生 医疗保健 内分泌学 经济增长 经济
作者
Yujie Yang,Ye Li,Runge Chen,Jing Zheng,Yunpeng Cai,Giancarlo Fortino
出处
期刊:Big Data Research [Elsevier BV]
卷期号:25: 100234-100234 被引量:15
标识
DOI:10.1016/j.bdr.2021.100234
摘要

Renal failure is a fatal disease raising global concerns. Previous risk models for renal failure mostly rely on the diagnosis of chronic kidney disease, which lacks obvious clinical symptoms and thus is mostly undiagnosed, causing significant omission of high-risk patients. In this paper, we proposed a framework to predict the risk of renal failure directly from a big data repository of chronic disease population without prerequisite diagnosis of chronic kidney disease. The electronic health records of 42,256 patients with hypertension or diabetes in Shenzhen Health Information Big Data Platform were collected, with 398 suffered from renal failure during a 3-year follow-up. Five state-of-the-art machine learning methods are utilized to build risk prediction models of renal failure for chronic disease population. Extensive experimental results show that the proposed framework achieves quite well performance. Particularly, the XGBoost obtains the best performance with an area under receiving-operating-characteristics curve (AUC) of 0.9139. By analyzing the effect of risk factors, we identified that serum creatine, age, urine acid, systolic blood pressure, and blood urea nitrogen are the top five factors associated with renal failure risk. Compared with existing models, our model can be deployed into routine chronic disease management procedures and enable more preemptive, widely-covered screening of renal risks, which would in turn reduce the damage caused by the disease through timely intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助苏翰英采纳,获得10
1秒前
风趣千秋完成签到,获得积分10
3秒前
FashionBoy应助个性的汲采纳,获得10
5秒前
苏翰英完成签到,获得积分20
6秒前
猪头军师完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
lyz完成签到 ,获得积分10
8秒前
我是老大应助Espionage采纳,获得10
8秒前
8秒前
10秒前
冲击吨吨鱼完成签到,获得积分20
10秒前
猪头军师发布了新的文献求助10
11秒前
猪猪完成签到,获得积分10
12秒前
Yaory完成签到,获得积分10
12秒前
lily完成签到,获得积分10
12秒前
最最完成签到,获得积分10
13秒前
Maggie发布了新的文献求助10
14秒前
贪玩的芸发布了新的文献求助10
14秒前
赘婿应助感动的薄荷采纳,获得10
15秒前
15秒前
19秒前
苏翰英发布了新的文献求助10
20秒前
22秒前
Espionage发布了新的文献求助10
23秒前
小章鱼发布了新的文献求助30
24秒前
小蘑菇应助在写了采纳,获得10
24秒前
大脑袋应助yys采纳,获得20
25秒前
OxO完成签到,获得积分10
25秒前
SciGPT应助冷酷豌豆采纳,获得10
26秒前
大模型应助干净绮山采纳,获得30
29秒前
3333完成签到,获得积分10
30秒前
伊诺发布了新的文献求助10
30秒前
JackLiu完成签到,获得积分10
31秒前
情怀应助东京芝士123采纳,获得10
33秒前
乐乐应助噜噜噜噜噜采纳,获得10
33秒前
李梓明完成签到,获得积分10
33秒前
CodeCraft应助3333采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962550
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141672
捐赠科研通 3241287
什么是DOI,文献DOI怎么找? 1791495
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803474