Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning

强化学习 风速 计算机科学 人工智能 一般化 集成学习 集合预报 机器学习 数学 物理 数学分析 气象学
作者
Chao Chen,Hui Liu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:48: 101290-101290 被引量:23
标识
DOI:10.1016/j.aei.2021.101290
摘要

• A novel dynamic ensemble model is proposed for wind speed prediction. • Multi-objective optimization is used to determine combination weights. • A deep reinforcement learning environment is created to select non-dominated solution. • The proposed model is comprehensively evaluated by four actual wind speed datasets. Prediction of wind speed can provide a reference for the reliable utilization of wind energy. This study focuses on 1-hour, 1-step ahead deterministic wind speed prediction with only wind speed as input. To consider the time-varying characteristics of wind speed series, a dynamic ensemble wind speed prediction model based on deep reinforcement learning is proposed. It includes ensemble learning, multi-objective optimization, and deep reinforcement learning to ensure effectiveness. In part A, deep echo state network enhanced by real-time wavelet packet decomposition is used to construct base models with different vanishing moments. The variety of vanishing moments naturally guarantees the diversity of base models. In part B, multi-objective optimization is adopted to determine the combination weights of base models. The bias and variance of ensemble model are synchronously minimized to improve generalization ability. In part C, the non-dominated solutions of combination weights are embedded into a deep reinforcement learning environment to achieve dynamic selection. By reasonably designing the reinforcement learning environment, it can dynamically select non-dominated solution in each prediction according to the time-varying characteristics of wind speed. Four actual wind speed series are used to validate the proposed dynamic ensemble model. The results show that: (a) The proposed dynamic ensemble model is competitive for wind speed prediction. It significantly outperforms five classic intelligent prediction models and six ensemble methods; (b) Every part of the proposed model is indispensable to improve the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tanmeng77发布了新的文献求助10
刚刚
1秒前
艺玲完成签到,获得积分10
1秒前
每天都想下班完成签到 ,获得积分10
1秒前
2秒前
圈圈发布了新的文献求助10
2秒前
忧郁的听露关注了科研通微信公众号
2秒前
风趣的涵柏完成签到,获得积分10
2秒前
3秒前
3秒前
成就梦松发布了新的文献求助10
3秒前
1233333完成签到,获得积分10
3秒前
ding应助EunolusZ采纳,获得10
3秒前
Andy完成签到 ,获得积分10
4秒前
艺玲发布了新的文献求助10
4秒前
yls完成签到,获得积分10
4秒前
wang完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
6秒前
lulu完成签到,获得积分10
6秒前
沉静青寒完成签到,获得积分10
6秒前
REN关闭了REN文献求助
7秒前
好运锦鲤完成签到 ,获得积分10
7秒前
美有姬完成签到,获得积分10
8秒前
万能图书馆应助何博士采纳,获得10
8秒前
科研通AI2S应助蘑菇采纳,获得10
8秒前
一平发布了新的文献求助10
9秒前
王一博完成签到,获得积分10
9秒前
10秒前
nihil完成签到,获得积分10
10秒前
活力的泥猴桃完成签到 ,获得积分10
11秒前
11秒前
12秒前
obito完成签到,获得积分10
12秒前
娜行发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
Ck完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672