亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic ensemble wind speed prediction model based on hybrid deep reinforcement learning

强化学习 风速 计算机科学 人工智能 一般化 集成学习 集合预报 机器学习 数学 物理 数学分析 气象学
作者
Chao Chen,Hui Liu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:48: 101290-101290 被引量:23
标识
DOI:10.1016/j.aei.2021.101290
摘要

• A novel dynamic ensemble model is proposed for wind speed prediction. • Multi-objective optimization is used to determine combination weights. • A deep reinforcement learning environment is created to select non-dominated solution. • The proposed model is comprehensively evaluated by four actual wind speed datasets. Prediction of wind speed can provide a reference for the reliable utilization of wind energy. This study focuses on 1-hour, 1-step ahead deterministic wind speed prediction with only wind speed as input. To consider the time-varying characteristics of wind speed series, a dynamic ensemble wind speed prediction model based on deep reinforcement learning is proposed. It includes ensemble learning, multi-objective optimization, and deep reinforcement learning to ensure effectiveness. In part A, deep echo state network enhanced by real-time wavelet packet decomposition is used to construct base models with different vanishing moments. The variety of vanishing moments naturally guarantees the diversity of base models. In part B, multi-objective optimization is adopted to determine the combination weights of base models. The bias and variance of ensemble model are synchronously minimized to improve generalization ability. In part C, the non-dominated solutions of combination weights are embedded into a deep reinforcement learning environment to achieve dynamic selection. By reasonably designing the reinforcement learning environment, it can dynamically select non-dominated solution in each prediction according to the time-varying characteristics of wind speed. Four actual wind speed series are used to validate the proposed dynamic ensemble model. The results show that: (a) The proposed dynamic ensemble model is competitive for wind speed prediction. It significantly outperforms five classic intelligent prediction models and six ensemble methods; (b) Every part of the proposed model is indispensable to improve the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助爱听歌书芹采纳,获得10
5秒前
天天快乐应助爱听歌书芹采纳,获得10
5秒前
16秒前
22秒前
42秒前
碳土不凡完成签到 ,获得积分10
50秒前
传奇完成签到 ,获得积分10
51秒前
Yucorn完成签到 ,获得积分10
52秒前
loewy完成签到,获得积分10
56秒前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
shiyang2014完成签到,获得积分10
1分钟前
花花公子完成签到,获得积分10
1分钟前
sola完成签到 ,获得积分10
1分钟前
懒羊羊大王完成签到 ,获得积分10
1分钟前
1分钟前
欢呼的寻双完成签到,获得积分10
1分钟前
Mollyshimmer完成签到 ,获得积分10
1分钟前
SCIfafafafa发布了新的文献求助10
3分钟前
duxiao完成签到 ,获得积分10
3分钟前
情怀应助SCIfafafafa采纳,获得10
3分钟前
小六子完成签到,获得积分10
3分钟前
Lucas应助duxiao采纳,获得10
3分钟前
Aaron完成签到 ,获得积分0
3分钟前
在水一方应助科研通管家采纳,获得30
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
4分钟前
Jasper应助hongtao采纳,获得10
4分钟前
4分钟前
JamesPei应助Fung采纳,获得10
4分钟前
4分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
5分钟前
5分钟前
qiu发布了新的文献求助10
5分钟前
顾矜应助狂发文章采纳,获得10
5分钟前
5分钟前
Djnsbj发布了新的文献求助10
5分钟前
5分钟前
狂发文章发布了新的文献求助10
5分钟前
5分钟前
寒冷苗条应助Djnsbj采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214