润滑
口感
化学
唾液
多酚
化学工程
色谱法
材料科学
有机化学
生物化学
复合材料
抗氧化剂
工程类
原材料
作者
Raisa E.D. Rudge,Philipp Fuhrmann,R. Scheermeijer,E.M. van der Zanden,Joshua A. Dijksman,Elke Scholten
标识
DOI:10.1016/j.foodhyd.2021.106951
摘要
Astringency is one of the most complex oral sensations. This dry, puckering mouthfeel occurs when consuming wine, tea, or other foods containing polyphenols. The exact mechanism behind this dry mouthfeel is not completely understood. Here, we describe a systematic tribological approach to measure model and real saliva to understand the specific role of the salivary proteins (mucins and proline-rich proteins (PRPs)) on lubrication-based astringency. Our approach reveals that there are two routes towards lubrication losses, partly involving irreversible molecular mechanisms for which the order of reactivity matters. For human saliva, we find two lubrication mechanisms: (I) Using phenolic compounds, we find aggregation-induced lubrication losses due to hydrogen bond formation, which depend critically on phenol size: large polyphenols allow for aggregation-induced lubrication losses, but small phenols do not. (II) For metal salts combined with saliva, we observe aggregation without lubrication losses as a result of electrostatic interactions. We find that lubrication losses are caused by the specific removal of the salivary PRP layer, whereas mucin aggregation in the presence of PRPs does not lead to lubrication losses. Additionally, we show that the addition of solvents that are able to reduce protein-polyphenol hydrogen bonding (e.g. ethanol) can prevent lubrication losses. Lubrication losses can also be compensated by the addition of highly viscous fluids (glycerol) that can provide viscous lubrication.
科研通智能强力驱动
Strongly Powered by AbleSci AI