Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning

卷积神经网络 心脏病 金标准(测试) 工作量 计算机科学 深度学习 人工智能 经济短缺 医学 人工神经网络 鉴定(生物学) 桥(图论) 机器学习 病理 放射科 内科学 语言学 政府(语言学) 哲学 操作系统 生物 植物
作者
Joao Francisco B. S. Martins,Erickson R. Nascimento,Bruno Ramos Nascimento,Craig Sable,Andrea Beaton,Antônio Luiz Pinho Ribeiro,Wagner Meira,Gisele L. Pappa
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:28 (9): 1834-1842 被引量:36
标识
DOI:10.1093/jamia/ocab061
摘要

Rheumatic heart disease (RHD) affects an estimated 39 million people worldwide and is the most common acquired heart disease in children and young adults. Echocardiograms are the gold standard for diagnosis of RHD, but there is a shortage of skilled experts to allow widespread screenings for early detection and prevention of the disease progress. We propose an automated RHD diagnosis system that can help bridge this gap.Experiments were conducted on a dataset with 11 646 echocardiography videos from 912 exams, obtained during screenings in underdeveloped areas of Brazil and Uganda. We address the challenges of RHD identification with a 3D convolutional neural network (C3D), comparing its performance with a 2D convolutional neural network (VGG16) that is commonly used in the echocardiogram literature. We also propose a supervised aggregation technique to combine video predictions into a single exam diagnosis.The proposed approach obtained an accuracy of 72.77% for exam diagnosis. The results for the C3D were significantly better than the ones obtained by the VGG16 network for videos, showing the importance of considering the temporal information during the diagnostic. The proposed aggregation model showed significantly better accuracy than the majority voting strategy and also appears to be capable of capturing underlying biases in the neural network output distribution, balancing them for a more correct diagnosis.Automatic diagnosis of echo-detected RHD is feasible and, with further research, has the potential to reduce the workload of experts, enabling the implementation of more widespread screening programs worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助navvv采纳,获得10
刚刚
yhp完成签到 ,获得积分10
2秒前
隐形曼青应助学术疯子采纳,获得10
2秒前
2秒前
ROSE完成签到,获得积分20
2秒前
梦幻完成签到,获得积分10
2秒前
甜甜完成签到,获得积分10
2秒前
3秒前
无花果应助哇奥采纳,获得10
3秒前
VV发布了新的文献求助10
4秒前
小蘑菇应助lyyyy采纳,获得30
4秒前
wz0330完成签到,获得积分10
4秒前
清新的达完成签到,获得积分10
4秒前
4秒前
yiran发布了新的文献求助30
5秒前
ganchao1776完成签到,获得积分10
5秒前
5秒前
洋芋擦擦完成签到 ,获得积分10
6秒前
可靠月亮发布了新的文献求助10
6秒前
6秒前
Drunk发布了新的文献求助10
6秒前
7秒前
一叶舟完成签到,获得积分10
7秒前
7秒前
7秒前
阔达犀牛完成签到,获得积分10
8秒前
8秒前
无花果应助噜噜噜路路鹿采纳,获得10
8秒前
幽默鸡完成签到,获得积分20
8秒前
追寻一一完成签到,获得积分20
8秒前
ganchao1776发布了新的文献求助10
8秒前
8秒前
8秒前
段笙完成签到,获得积分20
9秒前
9秒前
英俊的铭应助大方百招采纳,获得10
9秒前
9秒前
搜集达人应助这这采纳,获得50
9秒前
晴天小土豆完成签到 ,获得积分10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239042
求助须知:如何正确求助?哪些是违规求助? 4406526
关于积分的说明 13714333
捐赠科研通 4274907
什么是DOI,文献DOI怎么找? 2345793
邀请新用户注册赠送积分活动 1342859
关于科研通互助平台的介绍 1300823