Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning

卷积神经网络 心脏病 金标准(测试) 工作量 计算机科学 深度学习 人工智能 经济短缺 医学 人工神经网络 鉴定(生物学) 桥(图论) 机器学习 病理 放射科 内科学 语言学 哲学 政府(语言学) 操作系统 植物 生物
作者
Joao Francisco B. S. Martins,Erickson R. Nascimento,Bruno Ramos Nascimento,Craig Sable,Andrea Beaton,Antônio Luiz Pinho Ribeiro,Wagner Meira,Gisele L. Pappa
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:28 (9): 1834-1842 被引量:25
标识
DOI:10.1093/jamia/ocab061
摘要

Rheumatic heart disease (RHD) affects an estimated 39 million people worldwide and is the most common acquired heart disease in children and young adults. Echocardiograms are the gold standard for diagnosis of RHD, but there is a shortage of skilled experts to allow widespread screenings for early detection and prevention of the disease progress. We propose an automated RHD diagnosis system that can help bridge this gap.Experiments were conducted on a dataset with 11 646 echocardiography videos from 912 exams, obtained during screenings in underdeveloped areas of Brazil and Uganda. We address the challenges of RHD identification with a 3D convolutional neural network (C3D), comparing its performance with a 2D convolutional neural network (VGG16) that is commonly used in the echocardiogram literature. We also propose a supervised aggregation technique to combine video predictions into a single exam diagnosis.The proposed approach obtained an accuracy of 72.77% for exam diagnosis. The results for the C3D were significantly better than the ones obtained by the VGG16 network for videos, showing the importance of considering the temporal information during the diagnostic. The proposed aggregation model showed significantly better accuracy than the majority voting strategy and also appears to be capable of capturing underlying biases in the neural network output distribution, balancing them for a more correct diagnosis.Automatic diagnosis of echo-detected RHD is feasible and, with further research, has the potential to reduce the workload of experts, enabling the implementation of more widespread screening programs worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称完成签到,获得积分10
刚刚
zy完成签到,获得积分10
刚刚
ommphey完成签到 ,获得积分10
1秒前
可靠的书桃应助lixiang采纳,获得10
1秒前
1秒前
Smile完成签到,获得积分10
1秒前
msd2phd完成签到,获得积分10
2秒前
and999完成签到,获得积分10
2秒前
简单完成签到,获得积分10
3秒前
新青年完成签到,获得积分0
3秒前
renovel完成签到,获得积分10
3秒前
碧蓝曼安完成签到,获得积分10
4秒前
临时演员完成签到,获得积分0
4秒前
wuwa完成签到,获得积分10
4秒前
geopotter完成签到,获得积分10
5秒前
WJ1989完成签到,获得积分10
5秒前
5秒前
霸气的亿先完成签到 ,获得积分10
6秒前
actor2006完成签到,获得积分10
6秒前
伶俐鲂完成签到,获得积分10
7秒前
HAO完成签到,获得积分10
7秒前
哈哈哈完成签到,获得积分10
8秒前
共享精神应助佩佩采纳,获得10
8秒前
xiaojcom完成签到,获得积分10
8秒前
外向的书蝶完成签到,获得积分10
8秒前
Phoenix完成签到,获得积分10
9秒前
做实验太菜完成签到,获得积分10
10秒前
研友_QQC完成签到,获得积分10
10秒前
吉尼太美完成签到,获得积分10
10秒前
cookie完成签到,获得积分10
10秒前
Kkk完成签到 ,获得积分10
11秒前
tuzi完成签到,获得积分10
11秒前
糕糕完成签到,获得积分10
11秒前
科研通AI2S应助欢喜的雁枫采纳,获得200
11秒前
含蓄的小熊猫完成签到 ,获得积分10
12秒前
alixy发布了新的文献求助10
12秒前
xiao柒柒柒发布了新的文献求助10
12秒前
一二发布了新的文献求助10
14秒前
温柔梦松完成签到 ,获得积分10
14秒前
sometimesawake完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150700
求助须知:如何正确求助?哪些是违规求助? 2802232
关于积分的说明 7846614
捐赠科研通 2459579
什么是DOI,文献DOI怎么找? 1309294
科研通“疑难数据库(出版商)”最低求助积分说明 628849
版权声明 601757