DFT investigations on electronic and optical properties of (In, N, In–N) doped graphene

材料科学 石墨烯 石墨烯纳米带 兴奋剂 电子 双层石墨烯 吸收(声学) 带隙 凝聚态物理 原子物理学 纳米技术 光电子学 物理 复合材料 量子力学
作者
Wenchao Zhang,Yu Feng,Kuo Zhao,Min Jiang,Xunjun He,Yi Wang
出处
期刊:Modern Physics Letters B [World Scientific]
卷期号:35 (22): 2150346-2150346 被引量:2
标识
DOI:10.1142/s0217984921503462
摘要

The satisfactory performances of electronic structures, electronic and optical properties based on pure graphene and different components graphene of doping N, doping In and doping N–In were acquired by First-principle calculations. The pure graphene is an excellent semiconductor material with the zero gap. However, when graphene is doped with N, In and N–In, the gaps of energy will be opened. In the results of three different doping, the gap values of N, In and N–In are 0.2, 0.37 and 0.51 eV, respectively. In N-doped graphene, as the electrons leave the carbon, electrons are trapped by the nitrogen. On the contrary, electrons leave the indium atom and are picked up by the carbon for the In-doped graphene. When graphene is doped with N–In, more electrons (0.61 e) will be lost to nitrogen atoms compared with N-doped graphene (0.27 e) and more electrons (1.97 e) will be obtained to indium atoms compared with In-doped graphene (1.93 eV). After N, In, N–In doping, the overall strength of graphene absorption peaks will be weakened, which is more obvious for low-frequency peaks of graphene-doped with N and In. Pure graphene and N–In-doped graphene have similar absorption curves, but the difference between them is that the peak value of low-frequency absorption peak of N–In-doped graphene will be decreased compared with pure graphene. It is a satisfactory result to fully demonstrate that the band gap of graphene-doped system can be better regulated by the addition of nitrogen and indium atoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大反应釜完成签到,获得积分10
1秒前
TT发布了新的文献求助10
4秒前
Jenny发布了新的文献求助10
6秒前
6秒前
完美凝竹发布了新的文献求助10
6秒前
我是站长才怪应助细腻沅采纳,获得10
7秒前
JG完成签到 ,获得积分10
7秒前
hhh完成签到,获得积分20
7秒前
科研通AI5应助想瘦的海豹采纳,获得10
8秒前
随性完成签到 ,获得积分10
8秒前
自由的信仰完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
夏夏发布了新的文献求助10
13秒前
打打应助Hangerli采纳,获得10
15秒前
完美凝竹完成签到,获得积分10
16秒前
zfzf0422发布了新的文献求助10
17秒前
蜘蛛道理完成签到 ,获得积分10
17秒前
冷傲迎梦发布了新的文献求助10
18秒前
852应助MEME采纳,获得10
18秒前
Godzilla发布了新的文献求助10
18秒前
大模型应助咕噜仔采纳,获得10
19秒前
蒋时晏应助pharmstudent采纳,获得30
19秒前
20秒前
忘羡222发布了新的文献求助20
21秒前
魏伯安发布了新的文献求助10
21秒前
22秒前
不爱吃糖完成签到,获得积分10
22秒前
23秒前
balabala发布了新的文献求助10
24秒前
睿123456完成签到,获得积分10
25秒前
此话当真完成签到,获得积分10
26秒前
28秒前
慕青应助wmmm采纳,获得10
29秒前
科研通AI2S应助夏夏采纳,获得10
29秒前
隐形曼青应助夏夏采纳,获得10
29秒前
睿123456发布了新的文献求助10
29秒前
Godzilla完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824