Hyperspectral Image Classification Using a Hybrid 3D-2D Convolutional Neural Networks

过度拟合 模式识别(心理学) 卷积神经网络 计算机科学 人工智能 高光谱成像 特征提取 卷积(计算机科学) 上下文图像分类 规范化(社会学) 块(置换群论) 人工神经网络 图像(数学) 数学 社会学 人类学 几何学
作者
Saeed Ghaderizadeh,Dariush Abbasi‐Moghadam,Alireza Sharifi,Na Zhao,Aqil Tariq
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 7570-7588 被引量:130
标识
DOI:10.1109/jstars.2021.3099118
摘要

Due to the unique feature of the three-dimensional convolution neural network, it is used in image classification. There are some problems such as noise, lack of labeled samples, the tendency to overfitting, a lack of extraction of spectral and spatial features, which has challenged the classification. Among the mentioned problems, the lack of experimental samples is the main problem that has been used to solve the methods in recent years. Among them, convolutional neural network-based algorithms have been proposed as a popular option for hyperspectral image analysis due to their ability to extract useful features and high performance. The traditional convolutional neural network (CNN) based methods mainly use the two-dimensional CNN for feature extraction, which makes the interband correlations of HSIs underutilized. The 3-D-CNN extracts the joint spectral-spatial information representation, but it depends on a more complex model. To address these issues, the report uses a 3-D fast learning block (depthwise separable convolution block and a fast convolution block) followed by a 2-D convolutional neural network was introduced to extract spectral-spatial features. Using a hybrid CNN reduces the complexity of the model compared to using 3-D-CNN alone and can also perform well against noise and a limited number of training samples. In addition, a series of optimization methods including batch normalization, dropout, exponential decay learning rate, and L2 regularization are adopted to alleviate the problem of overfitting and improve the classification results. To test the performance of this hybrid method, it is performed on the Salinas, University Pavia and Indian Pines datasets, and the results are compared with 2-D-CNN and 3-D-CNN deep learning models with the same number of layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艳的皮皮虾完成签到 ,获得积分10
刚刚
打打应助azai采纳,获得10
刚刚
Orange应助azai采纳,获得10
刚刚
orixero应助azai采纳,获得10
刚刚
科研小白发布了新的文献求助10
1秒前
wang完成签到 ,获得积分10
1秒前
直率白秋发布了新的文献求助10
2秒前
Zeger116完成签到,获得积分10
3秒前
羊羊完成签到 ,获得积分10
4秒前
5秒前
Bobby完成签到,获得积分10
6秒前
感性的安露完成签到,获得积分10
6秒前
犹豫小海豚完成签到,获得积分10
7秒前
英姑应助殷勤的紫槐采纳,获得10
7秒前
哞哞完成签到,获得积分10
8秒前
芷烟完成签到 ,获得积分10
8秒前
zhuchenglu完成签到,获得积分10
8秒前
深情安青应助azai采纳,获得10
9秒前
天天快乐应助azai采纳,获得10
9秒前
Hello应助azai采纳,获得10
9秒前
汉堡包应助azai采纳,获得10
9秒前
qin希望应助azai采纳,获得10
9秒前
qin希望应助azai采纳,获得10
9秒前
缓慢如南应助azai采纳,获得10
9秒前
qin希望应助azai采纳,获得10
9秒前
qin希望应助azai采纳,获得10
9秒前
科研通AI5应助azai采纳,获得10
9秒前
解师完成签到,获得积分20
9秒前
lxt完成签到,获得积分10
10秒前
ysm完成签到,获得积分10
10秒前
大个应助Stellar777采纳,获得10
11秒前
xukaixuan001完成签到,获得积分10
11秒前
小李完成签到,获得积分10
12秒前
cmyohh完成签到 ,获得积分10
13秒前
雾见春完成签到 ,获得积分10
13秒前
沉默的香氛完成签到 ,获得积分10
13秒前
13秒前
勤奋花瓣完成签到,获得积分10
14秒前
Yara.H完成签到 ,获得积分10
15秒前
mumufan完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890