Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis

数学 图像分割 计算机视觉
作者
Guichao Lin,Yunchao Tang,Xiangjun Zou,Chenglin Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106107- 被引量:4
标识
DOI:10.1016/j.compag.2021.106107
摘要

Abstract In unstructured environments, harvesting robots may collide with disorderly growing branches, thus reducing the success rate of harvesting. This study introduces a fruit and branch detection and three-dimensional (3D) reconstruction method for obstacle avoidance path planning of robots. A new architecture for instance segmentation was developed by replacing the backbone of Mask R-CNN with a tiny network, referred to as “tiny Mask R-CNN”. The tiny Mask R-CNN was trained with a small number of images and used to detect guava fruits and branches. Each detected fruit and branch were converted into a 3D point cloud. It was then hypothesized that guava fruits could be represented by 3D spheres and irregular branches can be approximated by a finite number of 3D cylindrical segments. Based on the proposed hypothesis, a random sample consensus-based sphere fitting method and a principal component analysis-based cylindrical segment fitting method were investigated to reconstruct the fruits and branches from the point clouds. A guava dataset with 304 RGB-D images was collected from the fields and used to validate the developed method. The results showed that the detection F1 score of the tiny Mask R-CNN was 0.518; the F1 score for fruit reconstruction was approximately 0.851 and 0.833 under the 2D- and 3D-fruit metrics, respectively; and the F1 score for branch reconstruction was approximately 0.394 and 0.415 under the 2D- and 3D-branch metrics, respectively. These results confirm that the proposed method can effectively reconstruct the fruits and branches and can, therefore, be used to plan an obstacle avoidance path for harvesting robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou完成签到,获得积分10
刚刚
1秒前
张大旺发布了新的文献求助10
1秒前
6秒前
WZY完成签到,获得积分10
6秒前
8秒前
苏远山爱吃西红柿完成签到,获得积分10
9秒前
小小美少女完成签到 ,获得积分10
10秒前
10秒前
碧空蝉完成签到,获得积分10
13秒前
14秒前
NEKO发布了新的文献求助30
16秒前
17秒前
EKKO完成签到,获得积分10
18秒前
18秒前
谨慎的CZ完成签到 ,获得积分10
20秒前
21秒前
yushiolo发布了新的文献求助10
22秒前
杨紫宸发布了新的文献求助10
23秒前
香菜完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
云朵发布了新的文献求助30
25秒前
26秒前
安白枫发布了新的文献求助10
26秒前
27秒前
27秒前
Shu舒发布了新的文献求助10
28秒前
30秒前
mufcyang完成签到,获得积分10
30秒前
杨紫宸完成签到,获得积分10
34秒前
35秒前
英姑应助顶天立地采纳,获得30
37秒前
含蓄听南完成签到 ,获得积分10
37秒前
38秒前
一条闲鱼发布了新的文献求助10
40秒前
科目三应助Leonard采纳,获得10
40秒前
可可奇发布了新的文献求助10
43秒前
44秒前
WTaMi完成签到,获得积分10
45秒前
翻斗花园612完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851