Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis

数学 图像分割 计算机视觉
作者
Guichao Lin,Yunchao Tang,Xiangjun Zou,Chenglin Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106107- 被引量:4
标识
DOI:10.1016/j.compag.2021.106107
摘要

Abstract In unstructured environments, harvesting robots may collide with disorderly growing branches, thus reducing the success rate of harvesting. This study introduces a fruit and branch detection and three-dimensional (3D) reconstruction method for obstacle avoidance path planning of robots. A new architecture for instance segmentation was developed by replacing the backbone of Mask R-CNN with a tiny network, referred to as “tiny Mask R-CNN”. The tiny Mask R-CNN was trained with a small number of images and used to detect guava fruits and branches. Each detected fruit and branch were converted into a 3D point cloud. It was then hypothesized that guava fruits could be represented by 3D spheres and irregular branches can be approximated by a finite number of 3D cylindrical segments. Based on the proposed hypothesis, a random sample consensus-based sphere fitting method and a principal component analysis-based cylindrical segment fitting method were investigated to reconstruct the fruits and branches from the point clouds. A guava dataset with 304 RGB-D images was collected from the fields and used to validate the developed method. The results showed that the detection F1 score of the tiny Mask R-CNN was 0.518; the F1 score for fruit reconstruction was approximately 0.851 and 0.833 under the 2D- and 3D-fruit metrics, respectively; and the F1 score for branch reconstruction was approximately 0.394 and 0.415 under the 2D- and 3D-branch metrics, respectively. These results confirm that the proposed method can effectively reconstruct the fruits and branches and can, therefore, be used to plan an obstacle avoidance path for harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orange完成签到 ,获得积分10
1秒前
海儿的小宝贝完成签到,获得积分10
1秒前
wang完成签到,获得积分10
1秒前
2秒前
完美世界应助宝宝采纳,获得10
5秒前
fufufu123发布了新的文献求助10
6秒前
追寻的怜容完成签到 ,获得积分10
6秒前
活泼的似狮完成签到,获得积分10
6秒前
勇往直前完成签到,获得积分10
6秒前
clare完成签到 ,获得积分10
8秒前
NexusExplorer应助酷炫书芹采纳,获得10
9秒前
艾克盐滴小白完成签到,获得积分10
10秒前
骄傲慕尼黑完成签到,获得积分10
11秒前
Rainy完成签到 ,获得积分10
12秒前
三人水明完成签到 ,获得积分10
12秒前
烂漫的煎饼完成签到 ,获得积分10
14秒前
缓慢白曼完成签到 ,获得积分10
17秒前
shepherd完成签到 ,获得积分10
19秒前
龙阔完成签到 ,获得积分10
19秒前
胖胖橘完成签到 ,获得积分10
20秒前
离岸完成签到,获得积分10
21秒前
ZZ完成签到,获得积分10
23秒前
看文献完成签到,获得积分10
24秒前
徐徐图之完成签到 ,获得积分10
25秒前
wsr完成签到,获得积分10
26秒前
chen完成签到,获得积分10
28秒前
西瓜发布了新的文献求助30
28秒前
29秒前
fufufu123完成签到 ,获得积分10
29秒前
风中的向卉完成签到 ,获得积分10
31秒前
SAINT完成签到 ,获得积分10
32秒前
poplar完成签到,获得积分10
33秒前
娜na完成签到 ,获得积分10
33秒前
风之微光完成签到,获得积分10
34秒前
阡陌完成签到,获得积分10
36秒前
团结友爱完成签到 ,获得积分10
36秒前
wbb完成签到 ,获得积分10
38秒前
Yep0672完成签到,获得积分10
38秒前
简简单单完成签到 ,获得积分10
39秒前
从今伴君行完成签到,获得积分10
40秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167238
求助须知:如何正确求助?哪些是违规求助? 2818724
关于积分的说明 7922096
捐赠科研通 2478513
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443