Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis

数学 图像分割 计算机视觉
作者
Guichao Lin,Yunchao Tang,Xiangjun Zou,Chenglin Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106107- 被引量:4
标识
DOI:10.1016/j.compag.2021.106107
摘要

Abstract In unstructured environments, harvesting robots may collide with disorderly growing branches, thus reducing the success rate of harvesting. This study introduces a fruit and branch detection and three-dimensional (3D) reconstruction method for obstacle avoidance path planning of robots. A new architecture for instance segmentation was developed by replacing the backbone of Mask R-CNN with a tiny network, referred to as “tiny Mask R-CNN”. The tiny Mask R-CNN was trained with a small number of images and used to detect guava fruits and branches. Each detected fruit and branch were converted into a 3D point cloud. It was then hypothesized that guava fruits could be represented by 3D spheres and irregular branches can be approximated by a finite number of 3D cylindrical segments. Based on the proposed hypothesis, a random sample consensus-based sphere fitting method and a principal component analysis-based cylindrical segment fitting method were investigated to reconstruct the fruits and branches from the point clouds. A guava dataset with 304 RGB-D images was collected from the fields and used to validate the developed method. The results showed that the detection F1 score of the tiny Mask R-CNN was 0.518; the F1 score for fruit reconstruction was approximately 0.851 and 0.833 under the 2D- and 3D-fruit metrics, respectively; and the F1 score for branch reconstruction was approximately 0.394 and 0.415 under the 2D- and 3D-branch metrics, respectively. These results confirm that the proposed method can effectively reconstruct the fruits and branches and can, therefore, be used to plan an obstacle avoidance path for harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高骏伟发布了新的文献求助10
刚刚
乐天林发布了新的文献求助10
刚刚
Akim应助施世宏采纳,获得10
1秒前
liushiyi完成签到,获得积分10
1秒前
传奇3应助lsy采纳,获得10
1秒前
失眠呆呆鱼完成签到 ,获得积分10
2秒前
Dandanhuang完成签到,获得积分10
2秒前
那时花开应助Janus采纳,获得10
3秒前
fanfan发布了新的文献求助200
3秒前
4秒前
4秒前
GGGGG发布了新的文献求助10
4秒前
tcw1230发布了新的文献求助10
5秒前
song完成签到,获得积分20
5秒前
高天雨完成签到 ,获得积分10
6秒前
kevinjy完成签到,获得积分10
6秒前
6秒前
davedavedave完成签到 ,获得积分10
6秒前
高骏伟完成签到,获得积分10
6秒前
WU发布了新的文献求助10
7秒前
yuuan发布了新的文献求助10
7秒前
可爱的函函应助lingo采纳,获得10
8秒前
LIB完成签到,获得积分10
9秒前
9秒前
Herrr发布了新的文献求助10
10秒前
Dandanhuang发布了新的文献求助10
11秒前
CYH完成签到,获得积分10
12秒前
shuangshuang完成签到,获得积分10
12秒前
13秒前
FF发布了新的文献求助10
13秒前
try发布了新的文献求助10
13秒前
玉米大王完成签到 ,获得积分10
14秒前
雪晴完成签到,获得积分10
14秒前
美好的酬海完成签到,获得积分10
14秒前
16秒前
完美世界应助awaibi采纳,获得10
17秒前
17秒前
闪闪的从安完成签到,获得积分10
18秒前
aaaa完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295242
求助须知:如何正确求助?哪些是违规求助? 4444776
关于积分的说明 13834634
捐赠科研通 4329086
什么是DOI,文献DOI怎么找? 2376526
邀请新用户注册赠送积分活动 1371792
关于科研通互助平台的介绍 1337058