Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis

数学 图像分割 计算机视觉
作者
Guichao Lin,Yunchao Tang,Xiangjun Zou,Chenglin Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:184: 106107- 被引量:4
标识
DOI:10.1016/j.compag.2021.106107
摘要

Abstract In unstructured environments, harvesting robots may collide with disorderly growing branches, thus reducing the success rate of harvesting. This study introduces a fruit and branch detection and three-dimensional (3D) reconstruction method for obstacle avoidance path planning of robots. A new architecture for instance segmentation was developed by replacing the backbone of Mask R-CNN with a tiny network, referred to as “tiny Mask R-CNN”. The tiny Mask R-CNN was trained with a small number of images and used to detect guava fruits and branches. Each detected fruit and branch were converted into a 3D point cloud. It was then hypothesized that guava fruits could be represented by 3D spheres and irregular branches can be approximated by a finite number of 3D cylindrical segments. Based on the proposed hypothesis, a random sample consensus-based sphere fitting method and a principal component analysis-based cylindrical segment fitting method were investigated to reconstruct the fruits and branches from the point clouds. A guava dataset with 304 RGB-D images was collected from the fields and used to validate the developed method. The results showed that the detection F1 score of the tiny Mask R-CNN was 0.518; the F1 score for fruit reconstruction was approximately 0.851 and 0.833 under the 2D- and 3D-fruit metrics, respectively; and the F1 score for branch reconstruction was approximately 0.394 and 0.415 under the 2D- and 3D-branch metrics, respectively. These results confirm that the proposed method can effectively reconstruct the fruits and branches and can, therefore, be used to plan an obstacle avoidance path for harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Gracie采纳,获得10
1秒前
小王不爱上班完成签到,获得积分10
1秒前
SHEEP发布了新的文献求助10
1秒前
渴望者完成签到,获得积分20
2秒前
2秒前
2秒前
Jeux完成签到,获得积分10
3秒前
3秒前
帆帆发布了新的文献求助10
3秒前
科研通AI5应助Aj采纳,获得10
4秒前
h1j2g3发布了新的文献求助10
4秒前
鱼湘给鱼湘的求助进行了留言
5秒前
5秒前
emma完成签到,获得积分10
5秒前
SciGPT应助die采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
星辰大海应助当冬夜渐暖采纳,获得10
6秒前
6秒前
7秒前
陈陈完成签到 ,获得积分10
7秒前
7秒前
雨天完成签到,获得积分10
7秒前
7秒前
jimi发布了新的文献求助10
8秒前
飘逸夜南发布了新的文献求助30
10秒前
无尘泪完成签到,获得积分10
10秒前
赘婿应助苗子苗子采纳,获得10
10秒前
秀丽灵槐发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
落后的寄文完成签到,获得积分10
12秒前
自然鹭洋发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
16秒前
16秒前
柳絮完成签到,获得积分20
16秒前
怡yi发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4953724
求助须知:如何正确求助?哪些是违规求助? 4216292
关于积分的说明 13118013
捐赠科研通 3998359
什么是DOI,文献DOI怎么找? 2188329
邀请新用户注册赠送积分活动 1203508
关于科研通互助平台的介绍 1116043