Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis

数学 图像分割 计算机视觉
作者
Guichao Lin,Yunchao Tang,Xiangjun Zou,Chenglin Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106107- 被引量:4
标识
DOI:10.1016/j.compag.2021.106107
摘要

Abstract In unstructured environments, harvesting robots may collide with disorderly growing branches, thus reducing the success rate of harvesting. This study introduces a fruit and branch detection and three-dimensional (3D) reconstruction method for obstacle avoidance path planning of robots. A new architecture for instance segmentation was developed by replacing the backbone of Mask R-CNN with a tiny network, referred to as “tiny Mask R-CNN”. The tiny Mask R-CNN was trained with a small number of images and used to detect guava fruits and branches. Each detected fruit and branch were converted into a 3D point cloud. It was then hypothesized that guava fruits could be represented by 3D spheres and irregular branches can be approximated by a finite number of 3D cylindrical segments. Based on the proposed hypothesis, a random sample consensus-based sphere fitting method and a principal component analysis-based cylindrical segment fitting method were investigated to reconstruct the fruits and branches from the point clouds. A guava dataset with 304 RGB-D images was collected from the fields and used to validate the developed method. The results showed that the detection F1 score of the tiny Mask R-CNN was 0.518; the F1 score for fruit reconstruction was approximately 0.851 and 0.833 under the 2D- and 3D-fruit metrics, respectively; and the F1 score for branch reconstruction was approximately 0.394 and 0.415 under the 2D- and 3D-branch metrics, respectively. These results confirm that the proposed method can effectively reconstruct the fruits and branches and can, therefore, be used to plan an obstacle avoidance path for harvesting robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
天天快乐应助严天飞采纳,获得10
3秒前
3秒前
baqiuzunzhe发布了新的文献求助10
4秒前
孝顺的觅风完成签到 ,获得积分10
4秒前
5秒前
Cyuan发布了新的文献求助10
5秒前
JRZ完成签到,获得积分10
6秒前
6秒前
不想晚睡完成签到,获得积分10
6秒前
7秒前
Sylvia发布了新的文献求助50
7秒前
Lia_Yee完成签到,获得积分10
7秒前
8秒前
asdfqwer发布了新的文献求助10
8秒前
可爱的稚晴完成签到,获得积分20
8秒前
进击的PhD完成签到,获得积分10
9秒前
10秒前
单纯无声完成签到 ,获得积分10
10秒前
12秒前
西西弗斯完成签到,获得积分10
14秒前
李卓航发布了新的文献求助10
16秒前
领导范儿应助甜野采纳,获得10
16秒前
16秒前
18秒前
20秒前
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
好好应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
好好应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716