Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis

数学 图像分割 计算机视觉
作者
Guichao Lin,Yunchao Tang,Xiangjun Zou,Chenglin Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106107- 被引量:4
标识
DOI:10.1016/j.compag.2021.106107
摘要

Abstract In unstructured environments, harvesting robots may collide with disorderly growing branches, thus reducing the success rate of harvesting. This study introduces a fruit and branch detection and three-dimensional (3D) reconstruction method for obstacle avoidance path planning of robots. A new architecture for instance segmentation was developed by replacing the backbone of Mask R-CNN with a tiny network, referred to as “tiny Mask R-CNN”. The tiny Mask R-CNN was trained with a small number of images and used to detect guava fruits and branches. Each detected fruit and branch were converted into a 3D point cloud. It was then hypothesized that guava fruits could be represented by 3D spheres and irregular branches can be approximated by a finite number of 3D cylindrical segments. Based on the proposed hypothesis, a random sample consensus-based sphere fitting method and a principal component analysis-based cylindrical segment fitting method were investigated to reconstruct the fruits and branches from the point clouds. A guava dataset with 304 RGB-D images was collected from the fields and used to validate the developed method. The results showed that the detection F1 score of the tiny Mask R-CNN was 0.518; the F1 score for fruit reconstruction was approximately 0.851 and 0.833 under the 2D- and 3D-fruit metrics, respectively; and the F1 score for branch reconstruction was approximately 0.394 and 0.415 under the 2D- and 3D-branch metrics, respectively. These results confirm that the proposed method can effectively reconstruct the fruits and branches and can, therefore, be used to plan an obstacle avoidance path for harvesting robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LingC完成签到,获得积分10
刚刚
常改名完成签到,获得积分10
1秒前
xyq发布了新的文献求助10
1秒前
幽杨完成签到,获得积分10
1秒前
CASLSD完成签到 ,获得积分10
2秒前
三伏天完成签到,获得积分10
4秒前
lin完成签到,获得积分10
5秒前
缓慢的王完成签到,获得积分10
5秒前
ZGH完成签到,获得积分10
5秒前
6秒前
xyq完成签到,获得积分20
7秒前
CDI和LIB完成签到,获得积分10
8秒前
叶泽完成签到,获得积分10
8秒前
ich完成签到,获得积分10
9秒前
刘鑫慧完成签到 ,获得积分10
9秒前
伟大毕业旅程完成签到 ,获得积分10
10秒前
不想读书完成签到,获得积分10
11秒前
露露发布了新的文献求助10
11秒前
hallie完成签到,获得积分10
12秒前
朴实冷松完成签到 ,获得积分10
12秒前
孙刚完成签到 ,获得积分10
13秒前
大熊完成签到 ,获得积分10
13秒前
LDDLleor完成签到,获得积分10
15秒前
xiang完成签到 ,获得积分10
16秒前
塘仔完成签到,获得积分10
16秒前
MM完成签到,获得积分10
17秒前
17秒前
Ava应助闫佳美采纳,获得10
18秒前
18秒前
pophoo完成签到,获得积分10
18秒前
Stuki完成签到,获得积分10
18秒前
杨杨杨完成签到,获得积分10
19秒前
司徒元瑶完成签到 ,获得积分10
20秒前
木心完成签到,获得积分10
20秒前
科研小白完成签到,获得积分10
21秒前
391X小king给391X小king的求助进行了留言
21秒前
wlywdb完成签到,获得积分10
21秒前
SJW--666完成签到,获得积分0
22秒前
悦耳代双完成签到 ,获得积分10
22秒前
小y发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645203
求助须知:如何正确求助?哪些是违规求助? 4768026
关于积分的说明 15026718
捐赠科研通 4803706
什么是DOI,文献DOI怎么找? 2568447
邀请新用户注册赠送积分活动 1525738
关于科研通互助平台的介绍 1485378