Three-dimensional reconstruction of guava fruits and branches using instance segmentation and geometry analysis

数学 图像分割 计算机视觉
作者
Guichao Lin,Yunchao Tang,Xiangjun Zou,Chenglin Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106107- 被引量:4
标识
DOI:10.1016/j.compag.2021.106107
摘要

Abstract In unstructured environments, harvesting robots may collide with disorderly growing branches, thus reducing the success rate of harvesting. This study introduces a fruit and branch detection and three-dimensional (3D) reconstruction method for obstacle avoidance path planning of robots. A new architecture for instance segmentation was developed by replacing the backbone of Mask R-CNN with a tiny network, referred to as “tiny Mask R-CNN”. The tiny Mask R-CNN was trained with a small number of images and used to detect guava fruits and branches. Each detected fruit and branch were converted into a 3D point cloud. It was then hypothesized that guava fruits could be represented by 3D spheres and irregular branches can be approximated by a finite number of 3D cylindrical segments. Based on the proposed hypothesis, a random sample consensus-based sphere fitting method and a principal component analysis-based cylindrical segment fitting method were investigated to reconstruct the fruits and branches from the point clouds. A guava dataset with 304 RGB-D images was collected from the fields and used to validate the developed method. The results showed that the detection F1 score of the tiny Mask R-CNN was 0.518; the F1 score for fruit reconstruction was approximately 0.851 and 0.833 under the 2D- and 3D-fruit metrics, respectively; and the F1 score for branch reconstruction was approximately 0.394 and 0.415 under the 2D- and 3D-branch metrics, respectively. These results confirm that the proposed method can effectively reconstruct the fruits and branches and can, therefore, be used to plan an obstacle avoidance path for harvesting robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助wushangyu采纳,获得10
刚刚
乐瑶完成签到,获得积分10
1秒前
1秒前
Wulingfeng发布了新的文献求助10
1秒前
1秒前
1秒前
迷路的墨镜完成签到,获得积分10
1秒前
1秒前
Lxk发布了新的文献求助10
1秒前
秋墨发布了新的文献求助10
2秒前
gzmejiji完成签到,获得积分10
2秒前
jennifer发布了新的文献求助10
2秒前
2秒前
无极微光应助princess采纳,获得20
3秒前
helen发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
脑洞疼应助聂璐燕采纳,获得10
4秒前
4秒前
祁行云发布了新的文献求助10
5秒前
liuting完成签到,获得积分10
5秒前
李健的小迷弟应助小白鼠采纳,获得10
5秒前
山茶发布了新的文献求助10
5秒前
uu发布了新的文献求助10
6秒前
mager完成签到 ,获得积分10
6秒前
美好斓发布了新的文献求助10
6秒前
zhangzhang发布了新的文献求助10
6秒前
星空完成签到,获得积分10
7秒前
7秒前
华仔应助t250采纳,获得10
7秒前
风中忆枫发布了新的文献求助10
7秒前
wenkezeng发布了新的文献求助10
7秒前
生鱼安乐完成签到,获得积分10
8秒前
johnwick发布了新的文献求助10
8秒前
ivyyyyyy完成签到,获得积分10
8秒前
包容听南发布了新的文献求助10
8秒前
9秒前
qqq发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002