Förster resonance energy transfer (FRET)-based nanophotonics using DNA origami structures

DNA折纸 费斯特共振能量转移 DNA纳米技术 纳米技术 纳米光子学 光子学 纳米结构 材料科学 化学 DNA 光电子学 荧光 物理 光学 生物化学
作者
Lydia Olejko
摘要

The field of nanophotonics focuses on the interaction between electromagnetic radiation and matter on the nanometer scale. The elements of nanoscale photonic devices can transfer excitation energy non-radiatively from an excited donor molecule to an acceptor molecule by Forster resonance energy transfer (FRET). The efficiency of this energy transfer is highly dependent on the donor-acceptor distance. Hence, in these nanoscale photonic devices it is of high importance to have a good control over the spatial assembly of used fluorophores. Based on molecular self-assembly processes, various nanostructures can be produced. Here, DNA nanotechnology and especially the DNA origami technique are auspicious self-assembling methods. By using DNA origami nanostructures different fluorophores can be introduced with a high local control to create a variety of nanoscale photonic objects. The applications of such nanostructures range from photonic wires and logic gates for molecular computing to artificial light harvesting systems for artificial photosynthesis. In the present cumulative doctoral thesis, different FRET systems on DNA origami structures have been designed and thoroughly analyzed. Firstly, the formation of guanine (G) quadruplex structures from G rich DNA sequences has been studied based on a two-color FRET system (Fluorescein (FAM)/Cyanine3 (Cy3)). Here, the influences of different cations (Na+ and K+), of the DNA origami structure and of the DNA sequence on the G-quadruplex formation have been analyzed. In this study, an ion-selective K+ sensing scheme based on the G-quadruplex formation on DNA origami structures has been developed. Subsequently, the reversibility of the G-quadruplex formation on DNA origami structures has been evaluated. This has been done for the simple two-color FRET system which has then been advanced to a switchable photonic wire by introducing additional fluorophores (FAM/Cy3/Cyanine5 (Cy5)/IRDye®700). In the last part, the emission intensity of the acceptor molecule (Cy5) in a three-color FRET cascade has been tuned by arranging multiple donor (FAM) and transmitter (Cy3) molecules around the central acceptor molecule. In such artificial light harvesting systems, the excitation energy is absorbed by several donor and transmitter molecules followed by an energy transfer to the acceptor leading to a brighter Cy5 emission. Furthermore, the range of possible excitation wavelengths is extended by using several different fluorophores (FAM/Cy3/Cy5). In this part of the thesis, the light harvesting efficiency (antenna effect) and the FRET efficiency of different donor/transmitter/acceptor assemblies have been analyzed and the artificial light harvesting complex has been optimized in this respect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
森林木完成签到,获得积分10
3秒前
王大帅哥完成签到,获得积分10
3秒前
4秒前
5秒前
乔123发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
znn发布了新的文献求助10
9秒前
深情安青应助ysk采纳,获得10
9秒前
LeoChris发布了新的文献求助10
9秒前
9秒前
9秒前
潇洒的夜云应助falcon采纳,获得10
9秒前
糖糖完成签到,获得积分10
9秒前
9秒前
英俊的铭应助彩色若采纳,获得10
10秒前
Wu完成签到,获得积分10
10秒前
xhuryts发布了新的文献求助10
12秒前
纳米仁完成签到,获得积分10
12秒前
12秒前
12秒前
Johnpick发布了新的文献求助10
12秒前
搜集达人应助土拨鼠采纳,获得10
14秒前
14秒前
14秒前
charles完成签到,获得积分10
14秒前
赛猪发布了新的文献求助30
14秒前
我是老大应助songlf23采纳,获得10
15秒前
15秒前
Angew来来来完成签到,获得积分10
15秒前
智海瑞完成签到,获得积分10
16秒前
微笑的秀儿完成签到,获得积分10
17秒前
18秒前
天才幸运鱼完成签到,获得积分10
18秒前
chenhuan发布了新的文献求助10
18秒前
天天快乐应助奋斗的灭龙采纳,获得10
18秒前
19秒前
一沙发布了新的文献求助10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059