已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review

医学 神经影像学 胶质瘤 人工智能 机器学习 神经科学 医学物理学 精神科 计算机科学 心理学 癌症研究
作者
Quinlan D. Buchlak,Nazanin Esmaili,Jean‐Christophe Leveque,Christine Bennett,Farrokh Farrokhi,Massimo Piccardi
出处
期刊:Journal of Clinical Neuroscience [Elsevier]
卷期号:89: 177-198 被引量:80
标识
DOI:10.1016/j.jocn.2021.04.043
摘要

Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor.Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology.Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes.This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation.Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed.Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification.Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction.Model performance was generally strong (AUC=0.87±0.09;sensitivity=0.87±0.10;specificity=0.0.86±0.10;precision=0.88±0.11).Convolutional neural network, support vector machine and random forest algorithms were top performers.Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC=0.71).Machine learning tools and data resources were synthesized and summarized to facilitate future research.Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility.NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo发布了新的文献求助10
1秒前
颜九完成签到,获得积分10
1秒前
2秒前
小伙子完成签到,获得积分10
3秒前
hgm发布了新的文献求助10
4秒前
willlee完成签到 ,获得积分10
6秒前
wang发布了新的文献求助10
8秒前
8秒前
9秒前
bkagyin应助T1aNer299采纳,获得10
10秒前
Spirodelaz完成签到 ,获得积分10
12秒前
12秒前
万能图书馆应助代能能采纳,获得10
13秒前
xvan发布了新的文献求助10
16秒前
wang完成签到,获得积分10
17秒前
研友_8yN60L完成签到,获得积分10
17秒前
19秒前
领导范儿应助勤奋的鸡翅采纳,获得10
19秒前
大个应助kakamua采纳,获得10
22秒前
尔玉完成签到 ,获得积分10
23秒前
优雅绮波完成签到 ,获得积分10
25秒前
Echo完成签到,获得积分10
28秒前
XXX发布了新的文献求助10
29秒前
31秒前
32秒前
33秒前
英俊的铭应助思维隋采纳,获得10
33秒前
36秒前
36秒前
36秒前
CipherSage应助zhangfan采纳,获得10
37秒前
汉堡包应助科研通管家采纳,获得20
39秒前
浮游应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
Lucas应助科研通管家采纳,获得10
39秒前
Shashi完成签到,获得积分10
39秒前
英姑应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454635
求助须知:如何正确求助?哪些是违规求助? 4561964
关于积分的说明 14284045
捐赠科研通 4485792
什么是DOI,文献DOI怎么找? 2457038
邀请新用户注册赠送积分活动 1447677
关于科研通互助平台的介绍 1422913