Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review

医学 神经影像学 胶质瘤 人工智能 机器学习 神经科学 医学物理学 精神科 计算机科学 心理学 癌症研究
作者
Quinlan D. Buchlak,Nazanin Esmaili,Jean‐Christophe Leveque,Christine Bennett,Farrokh Farrokhi,Massimo Piccardi
出处
期刊:Journal of Clinical Neuroscience [Elsevier BV]
卷期号:89: 177-198 被引量:80
标识
DOI:10.1016/j.jocn.2021.04.043
摘要

Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor.Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology.Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes.This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation.Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed.Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification.Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction.Model performance was generally strong (AUC=0.87±0.09;sensitivity=0.87±0.10;specificity=0.0.86±0.10;precision=0.88±0.11).Convolutional neural network, support vector machine and random forest algorithms were top performers.Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC=0.71).Machine learning tools and data resources were synthesized and summarized to facilitate future research.Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility.NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
www完成签到,获得积分10
2秒前
坚强的安卉完成签到,获得积分20
2秒前
赵兴杰完成签到 ,获得积分20
3秒前
陌姌发布了新的文献求助10
3秒前
5秒前
浮游应助輝23采纳,获得10
5秒前
5秒前
6秒前
18969431868完成签到,获得积分10
6秒前
希望天下0贩的0应助科研H采纳,获得50
7秒前
9秒前
科目三应助山药汤采纳,获得10
9秒前
august发布了新的文献求助10
11秒前
赵赵赵发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
Ava应助净尤利安采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
17秒前
Rita应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
龙在天涯完成签到,获得积分0
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
勤勤发布了新的文献求助10
19秒前
搜集达人应助科研通管家采纳,获得200
19秒前
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182047
求助须知:如何正确求助?哪些是违规求助? 4368868
关于积分的说明 13604361
捐赠科研通 4220308
什么是DOI,文献DOI怎么找? 2314602
邀请新用户注册赠送积分活动 1313343
关于科研通互助平台的介绍 1262000