Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review

医学 神经影像学 胶质瘤 人工智能 机器学习 神经科学 医学物理学 精神科 计算机科学 心理学 癌症研究
作者
Quinlan D. Buchlak,Nazanin Esmaili,Jean‐Christophe Leveque,Christine Bennett,Farrokh Farrokhi,Massimo Piccardi
出处
期刊:Journal of Clinical Neuroscience [Elsevier BV]
卷期号:89: 177-198 被引量:80
标识
DOI:10.1016/j.jocn.2021.04.043
摘要

Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor.Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology.Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes.This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation.Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed.Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification.Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction.Model performance was generally strong (AUC=0.87±0.09;sensitivity=0.87±0.10;specificity=0.0.86±0.10;precision=0.88±0.11).Convolutional neural network, support vector machine and random forest algorithms were top performers.Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC=0.71).Machine learning tools and data resources were synthesized and summarized to facilitate future research.Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility.NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shentx完成签到,获得积分10
刚刚
传奇3应助yao采纳,获得10
刚刚
cjw完成签到,获得积分10
刚刚
随机的都是啥昵称完成签到 ,获得积分10
1秒前
战战完成签到,获得积分10
1秒前
1秒前
led完成签到,获得积分10
1秒前
科研通AI5应助Yiers采纳,获得10
1秒前
入门的橙橙完成签到 ,获得积分10
3秒前
星辰大海应助彩色的蛋糕采纳,获得10
3秒前
动听平露完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
4秒前
超帅的岱周完成签到,获得积分10
5秒前
坚定尔蓝完成签到,获得积分10
5秒前
昏睡的小蚂蚁完成签到,获得积分10
5秒前
tong完成签到,获得积分10
5秒前
6秒前
zhuyy完成签到,获得积分10
6秒前
jiyuan完成签到,获得积分10
6秒前
难过山菡完成签到,获得积分10
7秒前
Yi发布了新的文献求助10
7秒前
罐罐儿完成签到,获得积分0
7秒前
heqiongqiong完成签到,获得积分10
7秒前
董竹君完成签到,获得积分10
8秒前
cheng发布了新的文献求助10
8秒前
8秒前
满意怜翠完成签到,获得积分10
8秒前
2123121321321完成签到,获得积分10
9秒前
9秒前
远航完成签到,获得积分10
9秒前
10秒前
beforethedawn完成签到,获得积分10
10秒前
小二郎应助zz采纳,获得10
10秒前
摆烂fish完成签到,获得积分10
11秒前
11秒前
传统的雨文完成签到,获得积分10
11秒前
11秒前
ccccchen完成签到,获得积分10
11秒前
Yang发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763