Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review

医学 神经影像学 胶质瘤 人工智能 机器学习 神经科学 医学物理学 精神科 计算机科学 心理学 癌症研究
作者
Quinlan D. Buchlak,Nazanin Esmaili,Jean‐Christophe Leveque,Christine Bennett,Farrokh Farrokhi,Massimo Piccardi
出处
期刊:Journal of Clinical Neuroscience [Elsevier]
卷期号:89: 177-198 被引量:80
标识
DOI:10.1016/j.jocn.2021.04.043
摘要

Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor.Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology.Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes.This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation.Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed.Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification.Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction.Model performance was generally strong (AUC=0.87±0.09;sensitivity=0.87±0.10;specificity=0.0.86±0.10;precision=0.88±0.11).Convolutional neural network, support vector machine and random forest algorithms were top performers.Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC=0.71).Machine learning tools and data resources were synthesized and summarized to facilitate future research.Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility.NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2Rui完成签到,获得积分10
刚刚
老麦完成签到,获得积分10
1秒前
猹尔斯完成签到,获得积分10
1秒前
Stean完成签到 ,获得积分10
1秒前
1秒前
2秒前
畅快的文龙完成签到,获得积分10
2秒前
2秒前
3秒前
Gzl完成签到 ,获得积分10
3秒前
NJD应助wangzx315采纳,获得10
3秒前
3秒前
某某完成签到,获得积分10
4秒前
LG完成签到,获得积分10
4秒前
4秒前
碧蓝世立完成签到,获得积分10
4秒前
学术虫发布了新的文献求助10
6秒前
顾矜应助fantexi113采纳,获得10
6秒前
abc778发布了新的文献求助10
7秒前
7秒前
July完成签到 ,获得积分10
7秒前
7秒前
西瓜发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
兰禅子发布了新的文献求助10
8秒前
photogragher发布了新的文献求助10
9秒前
piupiu完成签到,获得积分10
9秒前
9秒前
CipherSage应助xkhxh采纳,获得10
10秒前
现代CC发布了新的文献求助10
10秒前
黑桃小哥完成签到,获得积分10
10秒前
kk99123应助刘玲采纳,获得10
11秒前
大胆菲音发布了新的文献求助30
11秒前
11秒前
11秒前
寒月如雪发布了新的文献求助10
12秒前
12秒前
HHHH发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342127
求助须知:如何正确求助?哪些是违规求助? 4478048
关于积分的说明 13938042
捐赠科研通 4374445
什么是DOI,文献DOI怎么找? 2403529
邀请新用户注册赠送积分活动 1396244
关于科研通互助平台的介绍 1368307