Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review

医学 神经影像学 胶质瘤 人工智能 机器学习 神经科学 医学物理学 精神科 计算机科学 心理学 癌症研究
作者
Quinlan D. Buchlak,Nazanin Esmaili,Jean‐Christophe Leveque,Christine Bennett,Farrokh Farrokhi,Massimo Piccardi
出处
期刊:Journal of Clinical Neuroscience [Elsevier]
卷期号:89: 177-198 被引量:72
标识
DOI:10.1016/j.jocn.2021.04.043
摘要

Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor.Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology.Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes.This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation.Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed.Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification.Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction.Model performance was generally strong (AUC=0.87±0.09;sensitivity=0.87±0.10;specificity=0.0.86±0.10;precision=0.88±0.11).Convolutional neural network, support vector machine and random forest algorithms were top performers.Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC=0.71).Machine learning tools and data resources were synthesized and summarized to facilitate future research.Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility.NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
凡仔完成签到,获得积分20
2秒前
2秒前
2秒前
Burnell发布了新的文献求助10
4秒前
4秒前
minr完成签到,获得积分20
6秒前
清爽博超发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
科研通AI2S应助Burnell采纳,获得10
8秒前
Sew东坡完成签到,获得积分10
8秒前
8秒前
xixixi发布了新的文献求助30
8秒前
852应助lalaland采纳,获得10
8秒前
852应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
Gilana应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
mk发布了新的文献求助10
9秒前
Gilana应助科研通管家采纳,获得10
9秒前
9秒前
井一发布了新的文献求助10
10秒前
dasheenly完成签到,获得积分10
11秒前
WLL发布了新的文献求助10
11秒前
12秒前
xinbowey发布了新的文献求助10
12秒前
13秒前
迅速猕猴桃完成签到 ,获得积分10
13秒前
222完成签到,获得积分10
13秒前
Burnell完成签到,获得积分20
15秒前
15秒前
小雨完成签到,获得积分10
15秒前
酷炫的乐枫完成签到,获得积分10
16秒前
小乔发布了新的文献求助10
17秒前
充电宝应助镜哥采纳,获得10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012