Enhancing the Electrochemical Performances by Wet Ball Milling to Introduce Structural Water into an Electrolytic MnO2/Graphite Nanocomposite Cathode for Zinc-Ion Batteries

材料科学 石墨 电化学 电解质 纳米复合材料 化学工程 阴极 结晶度 复合材料 电极 化学 物理化学 工程类
作者
Zining Zhang,Hongjing Shang,Xiaole Zhang,Chang Liu,Li Song,Zhongsheng Wen,Shijun Ji,Juncai Sun
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:4 (5): 5113-5122 被引量:25
标识
DOI:10.1021/acsaem.1c00665
摘要

The introduction of structural water in cathode materials of zinc-ion batteries can reduce electrostatic interactions to promote zinc-ion diffusion. However, it is difficult to introduce structural water in MnO2 cathodes due to annealing for crystallinity. For the first time, we introduce structural water into MnO2/graphite nanocomposites by simple wet ball milling of a mixture of electrolytic MnO2 and natural graphite. The composites of nanorod MnO2/graphite exhibit a high discharge capacity (312 mA h g–1 at 0.1 A g–1), which is more than twice that of electrolytic MnO2 (130 mA h g–1 at 0.1 A g–1). It also shows an outstanding rate capacity and cyclic stability that retains 80.1% of the incipient capacity after 1000 cycles at 1 A g–1. MnO2/graphite composites with certain structural water and oxygen vacancies exhibit excellent electrochemical properties, mainly because the presence of structural water and oxygen vacancies can promote Zn2+ ion diffusion of the materials. Through the results of density functional theory calculations and experiments, we verify the adsorption between structural water and crystal planes and identify the positions of structural water, mainly on the (102) and (110) planes of ε-MnO2, which make an impact on ion diffusion. This feasible wet ball milling can not only obtain the composite electrode materials with excellent electrochemical performances but also provide an approach for future synthesis of composite materials with structural water and oxygen vacancies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宴之思完成签到,获得积分10
1秒前
NMR完成签到,获得积分10
2秒前
2秒前
3秒前
11完成签到,获得积分10
4秒前
5秒前
JamesPei应助空白采纳,获得10
6秒前
lllll完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
Chao发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
lllll发布了新的文献求助20
11秒前
王莉完成签到 ,获得积分10
12秒前
12秒前
Owen应助陶醉的元槐采纳,获得10
12秒前
14秒前
14秒前
15秒前
15秒前
mouxq发布了新的文献求助10
15秒前
17秒前
11发布了新的文献求助10
17秒前
wtl发布了新的文献求助10
18秒前
空白发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
19秒前
852应助紧张的妖妖采纳,获得10
20秒前
知了完成签到 ,获得积分10
20秒前
所所应助削菠萝采纳,获得10
20秒前
搜集达人应助甜蜜雪柳采纳,获得10
21秒前
昊天锤发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
懒喵喵发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975871
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201502
捐赠科研通 3256611
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877552
科研通“疑难数据库(出版商)”最低求助积分说明 806430