Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfide‐Based All‐Solid‐State Batteries

材料科学 氧化物 硫化物 电化学 电解质 阴极 氧气 锂(药物) 析氧 涂层 化学工程 纳米技术 电极 物理化学 冶金 有机化学 化学 工程类 医学 内分泌学
作者
Changhong Wang,Sooyeon Hwang,Ming Jiang,Jianwen Liang,Yipeng Sun,Keegan R. Adair,Matthew Zheng,Sankha Mukherjee,Xiaona Li,Ruying Li,Huan Huang,Shangqian Zhao,Li Zhang,Shigang Lu,Jiantao Wang,Chandra Veer Singh,Dong Su,Xueliang Sun
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (24) 被引量:110
标识
DOI:10.1002/aenm.202100210
摘要

Abstract Large interfacial resistance resulting from interfacial reactions is widely acknowledged as one of the main challenges in sulfide electrolytes (SEs)‐based all‐solid‐state lithium batteries (ASSLBs). However, the root cause of the large interfacial resistance between the SEs and typical layered oxide cathodes is not fully understood yet. Here, it is shown that interfacial oxygen loss from single‐crystal LiNi 0.5 Mn 0.3 Co 0.2 O 2 (SC‐NMC532) chemically oxidizes Li 10 GeP 2 S 12 , generating oxygen‐containing interfacial species. Meanwhile, the interfacial oxygen loss also induces a structural change of oxide cathodes (layered‐to‐rock salt). In addition, the high operation voltage can electrochemically oxidize SEs to form non‐oxygen species (e.g., polysulfides). These chemically and electrochemically oxidized species, together with the interfacial structural change, are responsible for the large interfacial resistance at the cathode interface. More importantly, the widely adopted interfacial coating strategy is effective in suppressing chemically oxidized oxygen‐containing species and mitigating the coincident interfacial structural change but is unable to prevent electrochemically induced non‐oxygen species. These findings provide a deeper insight into the large interfacial resistance between the typical SE and layered oxide cathodes, which may be of assistance for the rational interface design of SE‐based ASSLBs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白鹭立雪完成签到,获得积分10
6秒前
zzn发布了新的文献求助10
7秒前
8秒前
霸气秀完成签到,获得积分10
8秒前
8秒前
阳光保温杯完成签到 ,获得积分10
9秒前
刘玄德发布了新的文献求助10
9秒前
FashionBoy应助hyyyh采纳,获得10
10秒前
10秒前
11秒前
duyisai发布了新的文献求助10
13秒前
小h发布了新的文献求助10
13秒前
zzn完成签到,获得积分10
13秒前
14秒前
14秒前
yznfly应助时间雨下采纳,获得20
16秒前
17秒前
科研迪发布了新的文献求助10
17秒前
欢喜的毛豆完成签到 ,获得积分10
18秒前
18秒前
18秒前
yangyujie25完成签到,获得积分10
20秒前
21秒前
21秒前
烟花应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
Violet关注了科研通微信公众号
22秒前
23秒前
天天发布了新的文献求助10
23秒前
klandcy完成签到,获得积分10
24秒前
爆米花应助小h采纳,获得10
27秒前
29秒前
benmao_mogu发布了新的文献求助10
29秒前
duyisai完成签到,获得积分10
31秒前
33秒前
35秒前
caoju发布了新的文献求助10
35秒前
40秒前
NexusExplorer应助Yashyi采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346