材料科学
氧化物
硫化物
电化学
电解质
阴极
氧气
锂(药物)
析氧
涂层
化学工程
纳米技术
电极
物理化学
冶金
有机化学
化学
内分泌学
工程类
医学
作者
Changhong Wang,Sooyeon Hwang,Ming Jiang,Jianwen Liang,Yipeng Sun,Keegan R. Adair,Matthew Zheng,Sankha Mukherjee,Xiaona Li,Ruying Li,Huan Huang,Shangqian Zhao,Li Zhang,Shigang Lu,Jiantao Wang,Chandra Veer Singh,Dong Su,Xueliang Sun
标识
DOI:10.1002/aenm.202100210
摘要
Abstract Large interfacial resistance resulting from interfacial reactions is widely acknowledged as one of the main challenges in sulfide electrolytes (SEs)‐based all‐solid‐state lithium batteries (ASSLBs). However, the root cause of the large interfacial resistance between the SEs and typical layered oxide cathodes is not fully understood yet. Here, it is shown that interfacial oxygen loss from single‐crystal LiNi 0.5 Mn 0.3 Co 0.2 O 2 (SC‐NMC532) chemically oxidizes Li 10 GeP 2 S 12 , generating oxygen‐containing interfacial species. Meanwhile, the interfacial oxygen loss also induces a structural change of oxide cathodes (layered‐to‐rock salt). In addition, the high operation voltage can electrochemically oxidize SEs to form non‐oxygen species (e.g., polysulfides). These chemically and electrochemically oxidized species, together with the interfacial structural change, are responsible for the large interfacial resistance at the cathode interface. More importantly, the widely adopted interfacial coating strategy is effective in suppressing chemically oxidized oxygen‐containing species and mitigating the coincident interfacial structural change but is unable to prevent electrochemically induced non‐oxygen species. These findings provide a deeper insight into the large interfacial resistance between the typical SE and layered oxide cathodes, which may be of assistance for the rational interface design of SE‐based ASSLBs in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI