Recognition of Automated Hand-written Digits on Document Images Making Use of Machine Learning Techniques

计算机科学 人工智能 数字识别 支持向量机 数字 模式识别(心理学) 机器学习 过程(计算) 排名(信息检索) 弦(物理) 特征提取 分割 特征(语言学) 卷积神经网络 人工神经网络 数学 算术 语言学 哲学 数学物理 操作系统
作者
Hiral Raja,Aarti Gupta,Rohit Miri
出处
期刊:European Journal of Engineering and Technology Research [European Open Access Publishing (Europa Publishing)]
卷期号:6 (4): 37-44 被引量:1
标识
DOI:10.24018/ejers.2021.6.4.2460
摘要

The purpose of this study is to create an automated framework that can recognize similar handwritten digit strings. For starting the experiment, the digits were separated into different numbers. The process of defining handwritten digit strings is then concluded by recognizing each digit recognition module's segmented digit. This research utilizes various machine learning techniques to produce a strong performance on the digit string recognition challenge, including SVM, ANN, and CNN architectures. These approaches use SVM, ANN, and CNN models of HOG feature vectors to train images of digit strings. Deep learning methods organize the pictures by moving a fixed-size monitor over them while categorizing each sub-image as a digit pass or fail. Following complete segmentation, complete recognition of handwritten digits is accomplished. To assess the methods' results, data must be used for machine learning training. Following that, the digit data is evaluated using the desired machine learning methodology. The Experiment findings indicate that SVM and ANN also have disadvantages in precision and efficiency in text picture recognition. Thus, the other process, CNN, performs better and is more accurate. This paper focuses on developing an effective system for automatically recognizing handwritten digits. This research would examine the adaptation of emerging machine learning and deep learning approaches to various datasets, like SVM, ANN, and CNN. The test results undeniably demonstrate that the CNN approach is significantly more effective than the ANN and SVM approaches, ranking 71% higher. The suggested architecture is composed of three major components: image pre-processing, attribute extraction, and classification. The purpose of this study is to enhance the precision of handwritten digit recognition significantly. As will be demonstrated, pre-processing and function extraction are significant elements of this study to obtain maximum consistency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Na完成签到,获得积分10
1秒前
2秒前
shaojiaikeyan完成签到,获得积分10
2秒前
Mao发布了新的文献求助10
4秒前
阿峰发布了新的文献求助10
4秒前
5秒前
Lize完成签到,获得积分10
5秒前
希与发布了新的文献求助10
5秒前
nn发布了新的文献求助10
5秒前
领导范儿应助1820采纳,获得10
6秒前
6秒前
sasa发布了新的文献求助10
6秒前
7秒前
柒玉染完成签到,获得积分10
8秒前
呜呜完成签到,获得积分10
8秒前
8秒前
风清扬发布了新的文献求助10
9秒前
9秒前
CipherSage应助Robin采纳,获得10
9秒前
我爱学习完成签到,获得积分10
10秒前
10秒前
10秒前
木木木完成签到,获得积分10
11秒前
sy完成签到,获得积分10
11秒前
科研通AI6应助子车凡采纳,获得10
11秒前
痴情的白易完成签到 ,获得积分20
12秒前
解解闷发布了新的文献求助10
12秒前
fufufu123完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
微笑的觅夏完成签到 ,获得积分10
13秒前
锅包又完成签到 ,获得积分10
14秒前
李健应助ZZQQ采纳,获得10
14秒前
刘丰铭发布了新的文献求助10
14秒前
14秒前
14秒前
柒玉染发布了新的文献求助10
15秒前
kqkqkqkqkq完成签到,获得积分20
16秒前
阿美完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809