Recognition of Automated Hand-written Digits on Document Images Making Use of Machine Learning Techniques

计算机科学 人工智能 数字识别 支持向量机 数字 模式识别(心理学) 机器学习 过程(计算) 排名(信息检索) 弦(物理) 特征提取 分割 特征(语言学) 卷积神经网络 人工神经网络 数学 算术 语言学 操作系统 哲学 数学物理
作者
Hiral Raja,Aarti Gupta,Rohit Miri
出处
期刊:European Journal of Engineering and Technology Research [European Open Access Publishing (Europa Publishing)]
卷期号:6 (4): 37-44 被引量:1
标识
DOI:10.24018/ejers.2021.6.4.2460
摘要

The purpose of this study is to create an automated framework that can recognize similar handwritten digit strings. For starting the experiment, the digits were separated into different numbers. The process of defining handwritten digit strings is then concluded by recognizing each digit recognition module's segmented digit. This research utilizes various machine learning techniques to produce a strong performance on the digit string recognition challenge, including SVM, ANN, and CNN architectures. These approaches use SVM, ANN, and CNN models of HOG feature vectors to train images of digit strings. Deep learning methods organize the pictures by moving a fixed-size monitor over them while categorizing each sub-image as a digit pass or fail. Following complete segmentation, complete recognition of handwritten digits is accomplished. To assess the methods' results, data must be used for machine learning training. Following that, the digit data is evaluated using the desired machine learning methodology. The Experiment findings indicate that SVM and ANN also have disadvantages in precision and efficiency in text picture recognition. Thus, the other process, CNN, performs better and is more accurate. This paper focuses on developing an effective system for automatically recognizing handwritten digits. This research would examine the adaptation of emerging machine learning and deep learning approaches to various datasets, like SVM, ANN, and CNN. The test results undeniably demonstrate that the CNN approach is significantly more effective than the ANN and SVM approaches, ranking 71% higher. The suggested architecture is composed of three major components: image pre-processing, attribute extraction, and classification. The purpose of this study is to enhance the precision of handwritten digit recognition significantly. As will be demonstrated, pre-processing and function extraction are significant elements of this study to obtain maximum consistency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
研友_LMNjkn发布了新的文献求助10
2秒前
ding应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
yizhiGao应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
pinging应助科研通管家采纳,获得10
3秒前
唠叨的月光完成签到,获得积分10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
清爽老九应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得20
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
清爽老九应助科研通管家采纳,获得20
3秒前
英姑应助科研通管家采纳,获得30
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
优雅苑睐完成签到,获得积分10
4秒前
善学以致用应助CD采纳,获得10
4秒前
无花果应助孙奕采纳,获得10
5秒前
5秒前
HYH发布了新的文献求助20
5秒前
Rinohalt发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
领导范儿应助通~采纳,获得10
7秒前
7秒前
fufufu123发布了新的文献求助10
7秒前
英姑应助猪猪hero采纳,获得10
7秒前
励志小薛发布了新的文献求助10
8秒前
怕孤独的从雪完成签到,获得积分20
8秒前
8秒前
joyce完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794