Recognition of Automated Hand-written Digits on Document Images Making Use of Machine Learning Techniques

计算机科学 人工智能 数字识别 支持向量机 数字 模式识别(心理学) 机器学习 过程(计算) 排名(信息检索) 弦(物理) 特征提取 分割 特征(语言学) 卷积神经网络 人工神经网络 数学 算术 语言学 哲学 数学物理 操作系统
作者
Hiral Raja,Aarti Gupta,Rohit Miri
出处
期刊:European Journal of Engineering and Technology Research [European Open Access Publishing (Europa Publishing)]
卷期号:6 (4): 37-44 被引量:1
标识
DOI:10.24018/ejers.2021.6.4.2460
摘要

The purpose of this study is to create an automated framework that can recognize similar handwritten digit strings. For starting the experiment, the digits were separated into different numbers. The process of defining handwritten digit strings is then concluded by recognizing each digit recognition module's segmented digit. This research utilizes various machine learning techniques to produce a strong performance on the digit string recognition challenge, including SVM, ANN, and CNN architectures. These approaches use SVM, ANN, and CNN models of HOG feature vectors to train images of digit strings. Deep learning methods organize the pictures by moving a fixed-size monitor over them while categorizing each sub-image as a digit pass or fail. Following complete segmentation, complete recognition of handwritten digits is accomplished. To assess the methods' results, data must be used for machine learning training. Following that, the digit data is evaluated using the desired machine learning methodology. The Experiment findings indicate that SVM and ANN also have disadvantages in precision and efficiency in text picture recognition. Thus, the other process, CNN, performs better and is more accurate. This paper focuses on developing an effective system for automatically recognizing handwritten digits. This research would examine the adaptation of emerging machine learning and deep learning approaches to various datasets, like SVM, ANN, and CNN. The test results undeniably demonstrate that the CNN approach is significantly more effective than the ANN and SVM approaches, ranking 71% higher. The suggested architecture is composed of three major components: image pre-processing, attribute extraction, and classification. The purpose of this study is to enhance the precision of handwritten digit recognition significantly. As will be demonstrated, pre-processing and function extraction are significant elements of this study to obtain maximum consistency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡胡完成签到 ,获得积分10
2秒前
yanyan123完成签到,获得积分10
2秒前
隐形元绿发布了新的文献求助10
3秒前
yyy完成签到,获得积分10
3秒前
weirdo完成签到,获得积分10
3秒前
55555完成签到,获得积分10
3秒前
4秒前
小徐801完成签到,获得积分10
5秒前
CQMZY_2025完成签到,获得积分10
6秒前
闫恒发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
害羞映容发布了新的文献求助10
7秒前
啦啦啦完成签到,获得积分10
7秒前
忧郁的凝竹完成签到,获得积分20
9秒前
香蕉鼠标完成签到 ,获得积分10
9秒前
柳七发布了新的文献求助10
10秒前
麦子完成签到 ,获得积分10
10秒前
11秒前
慕青应助薛喜康采纳,获得30
12秒前
充电宝应助michael采纳,获得10
13秒前
细腻小蜜蜂完成签到,获得积分10
14秒前
planb发布了新的文献求助10
14秒前
kai完成签到,获得积分10
15秒前
16秒前
16秒前
子建发布了新的文献求助10
17秒前
yusi应助大大采纳,获得10
17秒前
18秒前
牛奶糖完成签到,获得积分10
18秒前
19秒前
19秒前
koe发布了新的文献求助10
19秒前
20秒前
brick发布了新的文献求助10
20秒前
农艳宁发布了新的文献求助10
21秒前
缓慢的冰巧完成签到,获得积分10
21秒前
邓谷云完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370