Recognition of Automated Hand-written Digits on Document Images Making Use of Machine Learning Techniques

计算机科学 人工智能 数字识别 支持向量机 数字 模式识别(心理学) 机器学习 过程(计算) 排名(信息检索) 弦(物理) 特征提取 分割 特征(语言学) 卷积神经网络 人工神经网络 数学 算术 语言学 哲学 数学物理 操作系统
作者
Hiral Raja,Aarti Gupta,Rohit Miri
出处
期刊:European Journal of Engineering and Technology Research [European Open Access Publishing (Europa Publishing)]
卷期号:6 (4): 37-44 被引量:1
标识
DOI:10.24018/ejers.2021.6.4.2460
摘要

The purpose of this study is to create an automated framework that can recognize similar handwritten digit strings. For starting the experiment, the digits were separated into different numbers. The process of defining handwritten digit strings is then concluded by recognizing each digit recognition module's segmented digit. This research utilizes various machine learning techniques to produce a strong performance on the digit string recognition challenge, including SVM, ANN, and CNN architectures. These approaches use SVM, ANN, and CNN models of HOG feature vectors to train images of digit strings. Deep learning methods organize the pictures by moving a fixed-size monitor over them while categorizing each sub-image as a digit pass or fail. Following complete segmentation, complete recognition of handwritten digits is accomplished. To assess the methods' results, data must be used for machine learning training. Following that, the digit data is evaluated using the desired machine learning methodology. The Experiment findings indicate that SVM and ANN also have disadvantages in precision and efficiency in text picture recognition. Thus, the other process, CNN, performs better and is more accurate. This paper focuses on developing an effective system for automatically recognizing handwritten digits. This research would examine the adaptation of emerging machine learning and deep learning approaches to various datasets, like SVM, ANN, and CNN. The test results undeniably demonstrate that the CNN approach is significantly more effective than the ANN and SVM approaches, ranking 71% higher. The suggested architecture is composed of three major components: image pre-processing, attribute extraction, and classification. The purpose of this study is to enhance the precision of handwritten digit recognition significantly. As will be demonstrated, pre-processing and function extraction are significant elements of this study to obtain maximum consistency.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酱紫完成签到 ,获得积分10
4秒前
nzz发布了新的文献求助30
4秒前
久久丫完成签到 ,获得积分10
6秒前
tree发布了新的文献求助10
7秒前
closer完成签到 ,获得积分10
7秒前
小二郎应助不坠采纳,获得10
7秒前
研友_VZG7GZ应助不坠采纳,获得10
7秒前
花絮晚发布了新的文献求助10
8秒前
9秒前
不冬眠完成签到,获得积分10
12秒前
哇哦呀完成签到,获得积分10
12秒前
老迟到的澜完成签到,获得积分10
14秒前
14秒前
14秒前
呜呜呜完成签到,获得积分10
16秒前
16秒前
不开心我的完成签到,获得积分10
17秒前
nzz发布了新的文献求助10
21秒前
21秒前
LIUZHENGZHENG完成签到,获得积分10
21秒前
ren发布了新的文献求助10
23秒前
she关注了科研通微信公众号
24秒前
FashionBoy应助欢喜数据线采纳,获得20
26秒前
krislan完成签到,获得积分10
26秒前
美好凝莲完成签到,获得积分20
27秒前
29秒前
Carol_yl发布了新的文献求助10
33秒前
lucky发布了新的文献求助10
37秒前
37秒前
丘比特应助爹爹采纳,获得10
37秒前
Dyying完成签到,获得积分10
42秒前
nzz发布了新的文献求助10
42秒前
43秒前
小雨点完成签到 ,获得积分0
43秒前
1364135702完成签到 ,获得积分10
43秒前
44秒前
45秒前
Hello应助MM采纳,获得10
45秒前
45秒前
cherish完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877790
求助须知:如何正确求助?哪些是违规求助? 6545886
关于积分的说明 15682325
捐赠科研通 4996466
什么是DOI,文献DOI怎么找? 2692723
邀请新用户注册赠送积分活动 1634745
关于科研通互助平台的介绍 1592415