Recognition of Automated Hand-written Digits on Document Images Making Use of Machine Learning Techniques

计算机科学 人工智能 数字识别 支持向量机 数字 模式识别(心理学) 机器学习 过程(计算) 排名(信息检索) 弦(物理) 特征提取 分割 特征(语言学) 卷积神经网络 人工神经网络 数学 算术 语言学 哲学 数学物理 操作系统
作者
Hiral Raja,Aarti Gupta,Rohit Miri
出处
期刊:European Journal of Engineering and Technology Research [European Open Access Publishing (Europa Publishing)]
卷期号:6 (4): 37-44 被引量:1
标识
DOI:10.24018/ejers.2021.6.4.2460
摘要

The purpose of this study is to create an automated framework that can recognize similar handwritten digit strings. For starting the experiment, the digits were separated into different numbers. The process of defining handwritten digit strings is then concluded by recognizing each digit recognition module's segmented digit. This research utilizes various machine learning techniques to produce a strong performance on the digit string recognition challenge, including SVM, ANN, and CNN architectures. These approaches use SVM, ANN, and CNN models of HOG feature vectors to train images of digit strings. Deep learning methods organize the pictures by moving a fixed-size monitor over them while categorizing each sub-image as a digit pass or fail. Following complete segmentation, complete recognition of handwritten digits is accomplished. To assess the methods' results, data must be used for machine learning training. Following that, the digit data is evaluated using the desired machine learning methodology. The Experiment findings indicate that SVM and ANN also have disadvantages in precision and efficiency in text picture recognition. Thus, the other process, CNN, performs better and is more accurate. This paper focuses on developing an effective system for automatically recognizing handwritten digits. This research would examine the adaptation of emerging machine learning and deep learning approaches to various datasets, like SVM, ANN, and CNN. The test results undeniably demonstrate that the CNN approach is significantly more effective than the ANN and SVM approaches, ranking 71% higher. The suggested architecture is composed of three major components: image pre-processing, attribute extraction, and classification. The purpose of this study is to enhance the precision of handwritten digit recognition significantly. As will be demonstrated, pre-processing and function extraction are significant elements of this study to obtain maximum consistency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lh完成签到,获得积分10
刚刚
刚刚
文文完成签到,获得积分20
刚刚
1秒前
xzzt完成签到 ,获得积分10
1秒前
1秒前
2秒前
万能图书馆应助冷酷的戎采纳,获得10
2秒前
贺兰觿完成签到,获得积分10
2秒前
云仄完成签到,获得积分10
3秒前
李爱国应助汐和采纳,获得10
3秒前
W111111111完成签到,获得积分10
3秒前
Akim应助wy采纳,获得10
3秒前
怡然安南完成签到 ,获得积分10
4秒前
Zenobia发布了新的文献求助20
4秒前
我爱读文献完成签到,获得积分10
4秒前
annabelle应助风车术采纳,获得10
4秒前
5秒前
彭于晏应助加瓦采纳,获得10
5秒前
汐颜紫雨完成签到,获得积分10
5秒前
5秒前
Lxx发布了新的文献求助10
5秒前
小马甲应助文文采纳,获得10
5秒前
科研通AI6应助独特的斑马采纳,获得10
5秒前
nnnd77完成签到,获得积分20
5秒前
Ashe完成签到,获得积分10
6秒前
Lucas应助LOAD1N采纳,获得10
6秒前
wanci应助aaaa采纳,获得10
6秒前
LL完成签到,获得积分10
7秒前
摸鱼大王完成签到 ,获得积分10
7秒前
7秒前
7秒前
Rian发布了新的文献求助10
8秒前
骤雨时晴完成签到 ,获得积分10
8秒前
8秒前
lifang完成签到,获得积分10
8秒前
共享精神应助贺兰觿采纳,获得10
8秒前
MOOOO发布了新的文献求助10
8秒前
扁舟子完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659029
求助须知:如何正确求助?哪些是违规求助? 4825538
关于积分的说明 15084770
捐赠科研通 4817717
什么是DOI,文献DOI怎么找? 2578307
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491715