Identifying Influencing Factors of Agricultural Soil Heavy Metals Using a Geographical Detector: A Case Study in Shunyi District, China

环境科学 重金属 沉积(地质) 土工试验 农业 土地利用 研究对象 土壤科学 环境化学 地理 土壤水分 地质学 化学 生态学 沉积物 生物 区域科学 古生物学 考古
作者
Shiwei Dong,Yuchun Pan,Hui Guo,Bingbo Gao,Mengmeng Li
出处
期刊:Land [MDPI AG]
卷期号:10 (10): 1010-1010 被引量:4
标识
DOI:10.3390/land10101010
摘要

Identifying influencing factors of heavy metals is essential for soil evaluation and protection. This study investigates the use of a geographical detector to identify influencing factors of agricultural soil heavy metals from natural and anthropogenic aspects. We focused on six variables of soil heavy metals, i.e., As, Cd, Hg, Cu, Pb, Zn, and four influencing factors, i.e., soil properties (soil type and soil texture), digital elevation model (DEM), land use, and annual deposition fluxes. Experiments were conducted in Shunyi District, China. We studied the spatial correlations between variables of soil heavy metals and influencing factors at both single-object and multi-object levels. A geographical detector was directly used at the single-object level, while principal component analysis (PCA) and geographical detector were sequentially integrated at the multi-object level to identify influencing factors of heavy metals. Results showed that the concentrations of Cd, Cu, and Zn were mainly influenced by DEM (p = 0.008) and land use (p = 0.033) factors, while annual deposition fluxes were the main factors of the concentrations of Hg, Cd, and Pb (p = 0.000). Moreover, the concentration of As was primarily influenced by soil properties (p = 0.026), DEM (p = 0.000), and annual deposition flux (p = 0.000). The multi-object identification results between heavy metals and influencing factors included single object identification in this study. Compared with the results using the PCA and correlation analysis (CA) methods, the identification method developed at different levels can identify much more influencing factors of heavy metals. Due to its promising performance, identification at different levels can be widely employed for soil protection and pollution restoration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
3秒前
科研通AI2S应助jjjdcjcj采纳,获得10
3秒前
4秒前
4秒前
wangyuanyuan发布了新的文献求助10
4秒前
6秒前
6秒前
小哲发布了新的文献求助30
7秒前
英姑应助T_Y采纳,获得10
7秒前
半山完成签到,获得积分10
7秒前
G.D完成签到 ,获得积分10
8秒前
隐形傲霜完成签到 ,获得积分10
9秒前
小乖发布了新的文献求助10
9秒前
9秒前
英勇善愁完成签到,获得积分10
10秒前
度ewf发布了新的文献求助10
10秒前
hyw完成签到,获得积分10
11秒前
迟迟完成签到 ,获得积分10
13秒前
13秒前
wangyuanyuan完成签到,获得积分10
13秒前
和谐的颜完成签到,获得积分20
13秒前
14秒前
卷毛维安完成签到,获得积分10
15秒前
学术小天才完成签到,获得积分10
16秒前
努力的宁完成签到,获得积分10
16秒前
phil发布了新的文献求助10
17秒前
17秒前
凌云发布了新的文献求助10
17秒前
和谐的颜发布了新的文献求助10
18秒前
Dia完成签到,获得积分10
19秒前
19秒前
着急的黄豆完成签到,获得积分10
20秒前
21秒前
wcli发布了新的文献求助30
22秒前
科研通AI6应助冷傲山彤采纳,获得10
22秒前
autism发布了新的文献求助10
24秒前
24秒前
科目三应助度ewf采纳,获得10
24秒前
上官若男应助哈哈哈哈哈采纳,获得10
25秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891