Hybrid machine learning-enabled adaptive welding speed control

焊接 机器人焊接 计算机科学 卷积神经网络 人工神经网络 过程(计算) 感知器 人工智能 钨极气体保护焊 机器人 机械工程 工程类 电弧焊 操作系统
作者
Joseph Kershaw,Rui Yu,Yuming Zhang,Peng Wang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:71: 374-383 被引量:24
标识
DOI:10.1016/j.jmapro.2021.09.023
摘要

Industrial robots have become more diverse and common for automating manufacturing processes, such as welding. Existing robotic control, however, is incapable of adaptively adjusting its operation in response to a dynamic welding environment, whereas a skilled human welder can. Sophisticated and adaptive robotic control relies on the effective and efficient processing of perception data, characterization and prediction of highly dynamic systems, and real-time adaptative robotic reactions. This research presents a preliminary study on developing appropriate Machine Learning (ML) techniques for real-time welding quality prediction and adaptive welding speed adjustment for GTAW welding at a constant current. In order to collect the data needed to train the hybrid ML models, two cameras are applied to monitor the welding process, with one camera (available in practical robotic welding) recording the top-side weld pool dynamics and a second camera (unavailable in practical robotic welding, but applicable for training purpose) recording the back-side bead formation. Given these two data sets, correlations can be discovered through a convolutional neural network (CNN) that is good at image characterization. With the CNN, top-side weld pool images can be analyzed to predict the back-side bead width during active welding control. Furthermore, the monitoring process has been applied to multiple experimental trials with varying speeds. This allowed the effect of welding speed on bead width to be modeled through a Multi-Layer Perceptron (MLP). Through the trained MLP, a computationally efficient gradient descent algorithm has been developed to adjust the travel speed accordingly to achieve an optimal bead width with full material penetration. Because of the nature of gradient descent, the robot would change faster when the quality is further away and then fine-tune the speed when it was close to the goal. Experimental studies have shown promising results on real-time bead width prediction and adaptive speed adjustment to realize ideal bead width.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏翠桃发布了新的文献求助10
刚刚
8个老登发布了新的文献求助10
1秒前
1秒前
hhy完成签到,获得积分10
1秒前
孙一雯发布了新的文献求助30
2秒前
2秒前
Xxxnnian完成签到,获得积分20
3秒前
fancy发布了新的文献求助10
3秒前
apple完成签到,获得积分10
3秒前
3秒前
oldlee发布了新的文献求助10
4秒前
斜杠武发布了新的文献求助10
4秒前
毕业就好发布了新的文献求助10
4秒前
wusanlinshi完成签到,获得积分20
5秒前
娜行发布了新的文献求助10
5秒前
大雄完成签到,获得积分10
5秒前
kai发布了新的文献求助10
6秒前
科研通AI5应助老西瓜采纳,获得10
6秒前
核弹完成签到 ,获得积分10
6秒前
kevin完成签到,获得积分10
7秒前
Chem is try发布了新的文献求助10
7秒前
皖医梁朝伟完成签到 ,获得积分10
7秒前
汉堡包应助野性的南蕾采纳,获得10
7秒前
7秒前
便宜小师傅完成签到 ,获得积分10
8秒前
霏冉完成签到,获得积分10
8秒前
9秒前
Grayball应助包容的剑采纳,获得10
9秒前
董小天天完成签到,获得积分10
9秒前
9秒前
华仔应助qym采纳,获得10
9秒前
琅琊为刃完成签到,获得积分10
10秒前
酷波er应助hhh采纳,获得10
10秒前
10秒前
小巧的香氛完成签到 ,获得积分10
11秒前
11秒前
11秒前
zxcv23发布了新的文献求助10
11秒前
没有名称发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672