Hybrid machine learning-enabled adaptive welding speed control

焊接 机器人焊接 计算机科学 卷积神经网络 人工神经网络 过程(计算) 感知器 人工智能 钨极气体保护焊 机器人 机械工程 工程类 电弧焊 操作系统
作者
Joseph Kershaw,Rui Yu,Yuming Zhang,Peng Wang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:71: 374-383 被引量:24
标识
DOI:10.1016/j.jmapro.2021.09.023
摘要

Industrial robots have become more diverse and common for automating manufacturing processes, such as welding. Existing robotic control, however, is incapable of adaptively adjusting its operation in response to a dynamic welding environment, whereas a skilled human welder can. Sophisticated and adaptive robotic control relies on the effective and efficient processing of perception data, characterization and prediction of highly dynamic systems, and real-time adaptative robotic reactions. This research presents a preliminary study on developing appropriate Machine Learning (ML) techniques for real-time welding quality prediction and adaptive welding speed adjustment for GTAW welding at a constant current. In order to collect the data needed to train the hybrid ML models, two cameras are applied to monitor the welding process, with one camera (available in practical robotic welding) recording the top-side weld pool dynamics and a second camera (unavailable in practical robotic welding, but applicable for training purpose) recording the back-side bead formation. Given these two data sets, correlations can be discovered through a convolutional neural network (CNN) that is good at image characterization. With the CNN, top-side weld pool images can be analyzed to predict the back-side bead width during active welding control. Furthermore, the monitoring process has been applied to multiple experimental trials with varying speeds. This allowed the effect of welding speed on bead width to be modeled through a Multi-Layer Perceptron (MLP). Through the trained MLP, a computationally efficient gradient descent algorithm has been developed to adjust the travel speed accordingly to achieve an optimal bead width with full material penetration. Because of the nature of gradient descent, the robot would change faster when the quality is further away and then fine-tune the speed when it was close to the goal. Experimental studies have shown promising results on real-time bead width prediction and adaptive speed adjustment to realize ideal bead width.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
刚刚
zhuzhu发布了新的文献求助10
2秒前
Akim应助小邓顺利毕业采纳,获得10
3秒前
科研通AI2S应助风枫叶采纳,获得10
4秒前
雨辰发布了新的文献求助10
4秒前
5秒前
5秒前
小敏完成签到,获得积分10
6秒前
6秒前
喵茸茸完成签到,获得积分10
6秒前
10发布了新的文献求助10
6秒前
拉长的元芹完成签到,获得积分10
7秒前
田様应助空曲采纳,获得10
7秒前
xinC完成签到 ,获得积分10
7秒前
xiaohan,JIA完成签到,获得积分10
7秒前
小圆圈发布了新的文献求助10
10秒前
天天快乐应助zhuzhu采纳,获得10
10秒前
华仔应助fujun0095采纳,获得10
11秒前
Chrisiu发布了新的文献求助10
11秒前
Owen应助147258采纳,获得10
12秒前
殇璃完成签到 ,获得积分10
14秒前
15秒前
一路有你完成签到 ,获得积分10
15秒前
15秒前
16秒前
溪谷完成签到,获得积分10
17秒前
17秒前
17秒前
羊青丝完成签到,获得积分10
18秒前
CodeCraft应助xiao123789采纳,获得10
19秒前
Chrisiu完成签到,获得积分20
20秒前
20秒前
jw完成签到,获得积分10
20秒前
小蘑菇应助jeep先生采纳,获得10
20秒前
21秒前
黙宇循光发布了新的文献求助10
21秒前
赘婿应助Fin2046采纳,获得10
22秒前
redamancy完成签到 ,获得积分10
23秒前
23秒前
啦啦啦完成签到,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139996
求助须知:如何正确求助?哪些是违规求助? 2790894
关于积分的说明 7796961
捐赠科研通 2447258
什么是DOI,文献DOI怎么找? 1301779
科研通“疑难数据库(出版商)”最低求助积分说明 626340
版权声明 601194