Hybrid machine learning-enabled adaptive welding speed control

焊接 机器人焊接 计算机科学 卷积神经网络 人工神经网络 过程(计算) 感知器 人工智能 钨极气体保护焊 机器人 机械工程 工程类 电弧焊 操作系统
作者
Joseph Kershaw,Rui Yu,Yuming Zhang,Peng Wang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:71: 374-383 被引量:34
标识
DOI:10.1016/j.jmapro.2021.09.023
摘要

Industrial robots have become more diverse and common for automating manufacturing processes, such as welding. Existing robotic control, however, is incapable of adaptively adjusting its operation in response to a dynamic welding environment, whereas a skilled human welder can. Sophisticated and adaptive robotic control relies on the effective and efficient processing of perception data, characterization and prediction of highly dynamic systems, and real-time adaptative robotic reactions. This research presents a preliminary study on developing appropriate Machine Learning (ML) techniques for real-time welding quality prediction and adaptive welding speed adjustment for GTAW welding at a constant current. In order to collect the data needed to train the hybrid ML models, two cameras are applied to monitor the welding process, with one camera (available in practical robotic welding) recording the top-side weld pool dynamics and a second camera (unavailable in practical robotic welding, but applicable for training purpose) recording the back-side bead formation. Given these two data sets, correlations can be discovered through a convolutional neural network (CNN) that is good at image characterization. With the CNN, top-side weld pool images can be analyzed to predict the back-side bead width during active welding control. Furthermore, the monitoring process has been applied to multiple experimental trials with varying speeds. This allowed the effect of welding speed on bead width to be modeled through a Multi-Layer Perceptron (MLP). Through the trained MLP, a computationally efficient gradient descent algorithm has been developed to adjust the travel speed accordingly to achieve an optimal bead width with full material penetration. Because of the nature of gradient descent, the robot would change faster when the quality is further away and then fine-tune the speed when it was close to the goal. Experimental studies have shown promising results on real-time bead width prediction and adaptive speed adjustment to realize ideal bead width.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈雯发布了新的文献求助10
刚刚
百宝发布了新的文献求助10
刚刚
CC完成签到,获得积分10
1秒前
传奇3应助小慧儿采纳,获得10
1秒前
范子轩完成签到,获得积分10
2秒前
3秒前
文献完成签到 ,获得积分10
3秒前
4秒前
YM完成签到,获得积分10
5秒前
英俊的铭应助大白采纳,获得30
5秒前
Lusteri发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
众生平等完成签到,获得积分10
8秒前
9秒前
9秒前
小鹅发布了新的文献求助10
9秒前
小慧儿完成签到,获得积分10
9秒前
彭于晏应助盛夏吹过晚风采纳,获得10
10秒前
Lumos发布了新的文献求助10
10秒前
10秒前
领导范儿应助土豪的忆梅采纳,获得10
11秒前
李爱国应助大豆子采纳,获得10
11秒前
huihui完成签到 ,获得积分10
11秒前
英俊翠霜完成签到,获得积分10
11秒前
11秒前
小马甲应助lynn_zhang采纳,获得10
11秒前
菲子笑给菲子笑的求助进行了留言
11秒前
小慧儿发布了新的文献求助10
12秒前
12秒前
12秒前
流浪发布了新的文献求助10
14秒前
YM发布了新的文献求助10
14秒前
15秒前
16秒前
PHDpeng发布了新的文献求助10
16秒前
16秒前
虫虫发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617