已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design a novel BCI for neurorehabilitation using concurrent LFP and EEG features: a case study.

人工智能 神经反射 物理医学与康复 感觉运动节律
作者
Zhao Feng,Yi Sun,Iinze Qian,Yu Qi,Yueming Wang,Cuntai Guan,Yu Sun
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tbme.2021.3115799
摘要

Brain-computer interfaces (BCI) that enables people with severe motor disabilities to use their brain signals for direct control of objects have attracted increased interest in rehabilitation. To date, no study has investigated feasibility of the BCI framework incorporating both intracortical and scalp signals. Methods: Concurrent local field potential (LFP) from the hand-knob area and scalp EEG were recorded in a paraplegic patient undergoing a spike-based close-loop neurorehabilitation training. Based upon multimodal spatio-spectral feature extraction and Naive Bayes classification, we developed, for the first time, a novel LFP-EEG-BCI for motor intention decoding. A transfer learning (TL) approach was employed to further improve the feasibility. The performance of the proposed LFP-EEG-BCI for four-class upper-limb motor intention decoding was assessed. Results: Using a decision fusion strategy, we showed that the LFP-EEG-BCI significantly (p <0.05) outperformed single modal BCI (LFP-BCI and EEG-BCI) in terms of decoding accuracy with the best performance achieved using regularized common spatial pattern features. Interrogation of feature characteristics revealed discriminative spatial and spectral patterns, which may lead to new insights for better understanding of brain dynamics during different motor imagery tasks and promote development of efficient decoding algorithms. Moreover, we showed that similar classification performance could be obtained with few training trials, therefore highlighting the efficacy of TL. Conclusion: The present findings demonstrated the superiority of the novel LFP-EEG-BCI in motor intention decoding. Significance: This work introduced a novel LFP-EEG-BCI that may lead to new directions for developing practical neurorehabilitation systems with high detection accuracy and multi-paradigm feasibility in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WY完成签到,获得积分20
刚刚
星叶完成签到 ,获得积分10
1秒前
3秒前
3秒前
小糖完成签到 ,获得积分10
3秒前
顺利白竹完成签到 ,获得积分10
4秒前
找文献完成签到 ,获得积分10
4秒前
Aloha完成签到,获得积分20
5秒前
Chen完成签到 ,获得积分10
5秒前
hello2001完成签到 ,获得积分10
6秒前
友好亚男完成签到 ,获得积分10
6秒前
夏秋完成签到 ,获得积分10
7秒前
烂漫的煎饼完成签到 ,获得积分10
8秒前
Aloha发布了新的文献求助10
8秒前
8秒前
开放素完成签到 ,获得积分10
8秒前
peterwei272完成签到 ,获得积分10
9秒前
希望天下0贩的0应助夏天采纳,获得10
10秒前
yhz123完成签到 ,获得积分10
10秒前
丸子完成签到 ,获得积分10
11秒前
微笑冰棍完成签到 ,获得积分10
12秒前
Willwzh完成签到,获得积分10
14秒前
fwda1000完成签到 ,获得积分10
15秒前
刘小小完成签到 ,获得积分10
15秒前
科研牛马完成签到,获得积分10
16秒前
小凯完成签到 ,获得积分10
21秒前
677完成签到 ,获得积分10
22秒前
zrm完成签到,获得积分10
23秒前
25秒前
带头大哥应助奶油采纳,获得150
25秒前
yangzai完成签到 ,获得积分10
27秒前
默默冬瓜完成签到,获得积分10
27秒前
WoeL.Aug.11完成签到 ,获得积分10
27秒前
文明8完成签到,获得积分10
29秒前
fengyuke发布了新的文献求助10
30秒前
老宇发布了新的文献求助10
30秒前
虚幻沛菡完成签到 ,获得积分10
30秒前
33秒前
RTP完成签到 ,获得积分10
34秒前
白色蒲公英完成签到,获得积分10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256743
求助须知:如何正确求助?哪些是违规求助? 2898869
关于积分的说明 8302867
捐赠科研通 2568062
什么是DOI,文献DOI怎么找? 1394872
科研通“疑难数据库(出版商)”最低求助积分说明 652924
邀请新用户注册赠送积分活动 630631