Design a novel BCI for neurorehabilitation using concurrent LFP and EEG features: a case study.
人工智能
神经反射
物理医学与康复
感觉运动节律
作者
Zhao Feng,Yi Sun,Iinze Qian,Yu Qi,Yueming Wang,Cuntai Guan,Yu Sun
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers] 日期:2021-09-28卷期号:: 1-1
标识
DOI:10.1109/tbme.2021.3115799
摘要
Brain-computer interfaces (BCI) that enables people with severe motor disabilities to use their brain signals for direct control of objects have attracted increased interest in rehabilitation. To date, no study has investigated feasibility of the BCI framework incorporating both intracortical and scalp signals. Methods: Concurrent local field potential (LFP) from the hand-knob area and scalp EEG were recorded in a paraplegic patient undergoing a spike-based close-loop neurorehabilitation training. Based upon multimodal spatio-spectral feature extraction and Naive Bayes classification, we developed, for the first time, a novel LFP-EEG-BCI for motor intention decoding. A transfer learning (TL) approach was employed to further improve the feasibility. The performance of the proposed LFP-EEG-BCI for four-class upper-limb motor intention decoding was assessed. Results: Using a decision fusion strategy, we showed that the LFP-EEG-BCI significantly (p <0.05) outperformed single modal BCI (LFP-BCI and EEG-BCI) in terms of decoding accuracy with the best performance achieved using regularized common spatial pattern features. Interrogation of feature characteristics revealed discriminative spatial and spectral patterns, which may lead to new insights for better understanding of brain dynamics during different motor imagery tasks and promote development of efficient decoding algorithms. Moreover, we showed that similar classification performance could be obtained with few training trials, therefore highlighting the efficacy of TL. Conclusion: The present findings demonstrated the superiority of the novel LFP-EEG-BCI in motor intention decoding. Significance: This work introduced a novel LFP-EEG-BCI that may lead to new directions for developing practical neurorehabilitation systems with high detection accuracy and multi-paradigm feasibility in clinical applications.