Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in Atractylodes macrocephala Koidz

化学计量学 基质(化学分析) 荧光 荧光光谱法 分析化学(期刊) 色谱法 化学 物理 量子力学
作者
Min-Xi Li,Yan-Zi Li,Chen Yao,Tong Wang,Jian Yang,Haiyan Fu,Xiao‐Long Yang,Xu-Fu Li,Gong Zhang,Zengping Chen,Ru‐Qin Yu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:171: 106884-106884 被引量:12
标识
DOI:10.1016/j.microc.2021.106884
摘要

• Fluorescence EEMs combined with chemometrics method was proposed to identify the Atractylodes macrocephala Koidz. adulterated with different grain powders. • Classification model for adulteration identification was built by PLS-DA, k NN and random forest. • All the classification models achieved satisfactory results for the holdout adulterated AMK samples. • Adulteration levels in AMK can be predicted well by PLS regression model. Atractylodes macrocephala Koidz. (AMK) is a perennial herb with various medical functions and has been wildly used in ethno-medical system. It is common that unscrupulous merchants try to make huge profits by adulterating AMK powder with other cheaper or lower quality edible powder substance due to the growing shortage of genuine medicinal materials resources and the rising cost. Therefore, this work proposed excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for the rapid identification and quantification of AMK adulteration with other types of powder. Partial least squares discriminant analysis (PLS-DA), k -nearest neighbor ( k NN) and random forest (RF) model were used for the classification of pure AMK and specific type powder adulterated AMK. The correct classification rates for test sample were 93.0%, 95.0% and 100% for k NN, PLS-DA and RF, respectively. And RF could accurately classify 11 holdout adulterated AMK samples, even when the adulteration level was only 10%. Furthermore, the PLS regression model was used for the prediction of adulteration level in AMK. The results proved that the classification and regression models were reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小研完成签到,获得积分10
1秒前
风中从灵完成签到,获得积分20
1秒前
1秒前
hbgcld发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助zhao采纳,获得10
2秒前
hilda完成签到,获得积分10
2秒前
风中从灵发布了新的文献求助10
3秒前
鲜于诗霜发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
王大禹发布了新的文献求助20
5秒前
Khr1stINK发布了新的文献求助20
5秒前
Hello应助水云间采纳,获得30
5秒前
领导范儿应助哆啦B梦采纳,获得10
6秒前
luu发布了新的文献求助10
6秒前
大聪明发布了新的文献求助30
7秒前
lalala发布了新的文献求助10
8秒前
8秒前
KY发布了新的文献求助10
8秒前
8秒前
CodeCraft应助hbgcld采纳,获得10
9秒前
000000完成签到,获得积分10
9秒前
10秒前
10秒前
12秒前
hhhhhhw发布了新的文献求助10
12秒前
topsun完成签到,获得积分10
13秒前
无奈凝莲发布了新的文献求助10
13秒前
zjc1111发布了新的文献求助30
13秒前
zk发布了新的文献求助10
15秒前
在线人数九九加完成签到 ,获得积分10
15秒前
大个应助小舟采纳,获得10
16秒前
光亮小蚂蚁完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
清玄一叶完成签到,获得积分10
18秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328727
求助须知:如何正确求助?哪些是违规求助? 2958780
关于积分的说明 8591961
捐赠科研通 2637090
什么是DOI,文献DOI怎么找? 1443351
科研通“疑难数据库(出版商)”最低求助积分说明 668684
邀请新用户注册赠送积分活动 656012