Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in Atractylodes macrocephala Koidz

化学计量学 基质(化学分析) 荧光 荧光光谱法 分析化学(期刊) 色谱法 化学 物理 量子力学
作者
Min-Xi Li,Yan-Zi Li,Chen Yao,Tong Wang,Jian Yang,Haiyan Fu,Xiao‐Long Yang,Xu-Fu Li,Gong Zhang,Zeng‐Ping Chen,Ru‐Qin Yu
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:171: 106884-106884 被引量:15
标识
DOI:10.1016/j.microc.2021.106884
摘要

• Fluorescence EEMs combined with chemometrics method was proposed to identify the Atractylodes macrocephala Koidz. adulterated with different grain powders. • Classification model for adulteration identification was built by PLS-DA, k NN and random forest. • All the classification models achieved satisfactory results for the holdout adulterated AMK samples. • Adulteration levels in AMK can be predicted well by PLS regression model. Atractylodes macrocephala Koidz. (AMK) is a perennial herb with various medical functions and has been wildly used in ethno-medical system. It is common that unscrupulous merchants try to make huge profits by adulterating AMK powder with other cheaper or lower quality edible powder substance due to the growing shortage of genuine medicinal materials resources and the rising cost. Therefore, this work proposed excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for the rapid identification and quantification of AMK adulteration with other types of powder. Partial least squares discriminant analysis (PLS-DA), k -nearest neighbor ( k NN) and random forest (RF) model were used for the classification of pure AMK and specific type powder adulterated AMK. The correct classification rates for test sample were 93.0%, 95.0% and 100% for k NN, PLS-DA and RF, respectively. And RF could accurately classify 11 holdout adulterated AMK samples, even when the adulteration level was only 10%. Furthermore, the PLS regression model was used for the prediction of adulteration level in AMK. The results proved that the classification and regression models were reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玺青一生完成签到 ,获得积分10
3秒前
高速旋转老沁完成签到 ,获得积分10
7秒前
凉拌冰阔落完成签到 ,获得积分10
7秒前
郑zhenglanyou完成签到 ,获得积分10
8秒前
沉静的清涟完成签到,获得积分10
10秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
11秒前
啊哈哈哈哈哈完成签到 ,获得积分10
12秒前
12秒前
情怀应助yyy采纳,获得10
15秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
愛研究完成签到,获得积分10
19秒前
光之美少女完成签到 ,获得积分10
20秒前
微笑的若魔完成签到 ,获得积分10
21秒前
123456完成签到 ,获得积分10
22秒前
23秒前
严究生发布了新的文献求助10
25秒前
村长热爱美丽完成签到 ,获得积分10
28秒前
豆豆完成签到 ,获得积分10
30秒前
科研木头人完成签到 ,获得积分10
30秒前
31秒前
32秒前
Sleven完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
37秒前
Alisan完成签到,获得积分10
39秒前
吴总完成签到 ,获得积分10
40秒前
Ying完成签到,获得积分10
43秒前
leaolf应助科研通管家采纳,获得10
43秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
香蕉觅云应助发发旦旦采纳,获得10
45秒前
Dellamoffy完成签到,获得积分10
45秒前
飞快的冰淇淋完成签到 ,获得积分10
45秒前
8D完成签到,获得积分10
46秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
夜闲安坐完成签到 ,获得积分10
49秒前
Alisan发布了新的文献求助10
49秒前
机智幻香完成签到 ,获得积分10
49秒前
丘比特应助Assassion采纳,获得30
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597530
求助须知:如何正确求助?哪些是违规求助? 4009101
关于积分的说明 12409876
捐赠科研通 3688331
什么是DOI,文献DOI怎么找? 2033101
邀请新用户注册赠送积分活动 1066366
科研通“疑难数据库(出版商)”最低求助积分说明 951605