Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in Atractylodes macrocephala Koidz

化学计量学 基质(化学分析) 荧光 荧光光谱法 分析化学(期刊) 色谱法 化学 物理 量子力学
作者
Min-Xi Li,Yan-Zi Li,Chen Yao,Tong Wang,Jian Yang,Haiyan Fu,Xiao‐Long Yang,Xu-Fu Li,Gong Zhang,Zeng‐Ping Chen,Ru‐Qin Yu
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:171: 106884-106884 被引量:15
标识
DOI:10.1016/j.microc.2021.106884
摘要

• Fluorescence EEMs combined with chemometrics method was proposed to identify the Atractylodes macrocephala Koidz. adulterated with different grain powders. • Classification model for adulteration identification was built by PLS-DA, k NN and random forest. • All the classification models achieved satisfactory results for the holdout adulterated AMK samples. • Adulteration levels in AMK can be predicted well by PLS regression model. Atractylodes macrocephala Koidz. (AMK) is a perennial herb with various medical functions and has been wildly used in ethno-medical system. It is common that unscrupulous merchants try to make huge profits by adulterating AMK powder with other cheaper or lower quality edible powder substance due to the growing shortage of genuine medicinal materials resources and the rising cost. Therefore, this work proposed excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for the rapid identification and quantification of AMK adulteration with other types of powder. Partial least squares discriminant analysis (PLS-DA), k -nearest neighbor ( k NN) and random forest (RF) model were used for the classification of pure AMK and specific type powder adulterated AMK. The correct classification rates for test sample were 93.0%, 95.0% and 100% for k NN, PLS-DA and RF, respectively. And RF could accurately classify 11 holdout adulterated AMK samples, even when the adulteration level was only 10%. Furthermore, the PLS regression model was used for the prediction of adulteration level in AMK. The results proved that the classification and regression models were reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助明亮访烟采纳,获得10
刚刚
刚刚
玩笑完成签到 ,获得积分10
刚刚
nicenicer完成签到,获得积分10
1秒前
稳重绿旋完成签到,获得积分10
1秒前
hmbb发布了新的文献求助10
1秒前
1秒前
1秒前
陈宇航完成签到,获得积分10
1秒前
小小迷糊发布了新的文献求助10
2秒前
2秒前
Aurora发布了新的文献求助10
2秒前
2秒前
sxq完成签到,获得积分10
2秒前
2秒前
dyce完成签到,获得积分10
3秒前
LSHS发布了新的文献求助10
3秒前
4秒前
4秒前
SYW发布了新的文献求助10
5秒前
bioai完成签到,获得积分10
5秒前
心流中的麋鹿完成签到,获得积分10
5秒前
5秒前
keyannoob发布了新的文献求助20
5秒前
my发布了新的文献求助10
5秒前
蚂蚁Y嘿发布了新的文献求助10
5秒前
6秒前
abcdlove举报我快毛掉光了求助涉嫌违规
6秒前
6秒前
7秒前
ycy完成签到,获得积分10
7秒前
orixero应助研友_Z7QXwL采纳,获得10
8秒前
orixero应助phyzb采纳,获得30
8秒前
fox发布了新的文献求助10
8秒前
MS903发布了新的文献求助10
8秒前
陈宇航发布了新的文献求助30
9秒前
saajim发布了新的文献求助10
9秒前
9秒前
聪慧的寄松完成签到,获得积分20
9秒前
NexusExplorer应助zhaoyanan采纳,获得30
9秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238364
求助须知:如何正确求助?哪些是违规求助? 4405962
关于积分的说明 13712456
捐赠科研通 4274323
什么是DOI,文献DOI怎么找? 2345561
邀请新用户注册赠送积分活动 1342588
关于科研通互助平台的介绍 1300579