How much do students’ scores in PISA reflect general intelligence and how much do they reflect specific abilities?

心理学 智商 发展心理学 认知心理学 认知 神经科学
作者
Artur Pokropek,Gary Marks,Francesca Borgonovi
出处
期刊:Journal of Educational Psychology [American Psychological Association]
卷期号:114 (5): 1121-1135 被引量:31
标识
DOI:10.1037/edu0000687
摘要

International Large-Scale Assessments (LSAs) allow comparisons of education systems' effectiveness in promoting student learning in specific domains, such as reading, mathematics and science.However, it has been argued that students' scores in International LSAs mostly reflect general cognitive ability (g).This study examines the extent to which students' scores in reading, mathematics, science and in a Raven's Progressive Matrices test reflect general ability g and domain-specific abilities with data from 3472 Polish students who participated in the OECD's 2009 Programme for International Student Assessment (PISA) and who were retested with the same PISA instruments, but a different item set, in 2010.Variance in students' responses to test items is explained better by a bifactor Item Response Theory (IRT) model than by the multidimensional IRT model routinely employed to scale PISA and other LSAs.The bifactor IRT model assumes that non-g factors (reading, math, science and Raven's test) are uncorrelated with g and with each other.The bifactor model generates specific ability factors with more theoretically credible relationships with criterion variables than the standard model.Further analyses of the bifactor model indicate that the domain specific factors are not reliable enough to be interpreted meaningfully.They lie somewhere between unreliable measures of domain specific abilities and nuisance factors reflecting measurement error.The finding that PISA achievement scores reflect mostly g, which may arise because PISA aims to test broad ACHIEVEMENTS AND G-FACTOR 3 abilities in a variety of contexts or may be a general characteristic of LSAs and national achievement tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
实验体8567号完成签到,获得积分10
刚刚
mmr完成签到,获得积分10
1秒前
荷盖应助八九采纳,获得10
1秒前
ylz发布了新的文献求助10
1秒前
海浪发布了新的文献求助10
1秒前
1秒前
濮阳盼曼发布了新的文献求助10
2秒前
小美发布了新的文献求助10
2秒前
zzq完成签到,获得积分20
2秒前
Vicky完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
5秒前
amber发布了新的文献求助10
6秒前
Cutewm发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助doc采纳,获得10
7秒前
Nathan完成签到,获得积分10
7秒前
Sue发布了新的文献求助10
7秒前
ylz完成签到,获得积分10
8秒前
烟花应助麦苗果果采纳,获得10
8秒前
姚叶清发布了新的文献求助10
8秒前
叶轻寒发布了新的文献求助10
8秒前
昏睡的嵩完成签到 ,获得积分10
8秒前
123123发布了新的文献求助10
8秒前
仁爱春天完成签到,获得积分10
9秒前
10秒前
10秒前
Deerlu完成签到,获得积分10
10秒前
10秒前
11秒前
lovein完成签到,获得积分10
12秒前
vvv发布了新的文献求助10
12秒前
Y.fan完成签到 ,获得积分10
12秒前
bzc229完成签到,获得积分10
13秒前
zsl完成签到 ,获得积分10
13秒前
777发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445