已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical-Modality Super-resolution for increased visualisation of Intracranial Tissue Details and Structural Details

计算机科学 计算机视觉 人工智能 医学影像学 图像质量 可视化 图像分辨率 领域(数学) 特征(语言学) 图像处理 模态(人机交互) 直线(几何图形) 图像(数学) 数学 哲学 语言学 纯数学 几何学
作者
Dawa Chyophel Lepcha,Bhawna Goyal
标识
DOI:10.1109/icrito51393.2021.9596440
摘要

Numerous efforts have been made to produce high-resolution images for medical imaging equipment. The procedure for image acquisition in the medical imaging field however not invariably produce high quality images that can be beneficial for clinical diagnosis. Super resolution (SR) imaging has become a common area of research in medical imaging in particular nowadays. Because of its wide practical applications, image SR has drawn great interest in the domain of image processing community. The purpose of image SR is to produce high quality images from the low-quality counterparts. The field of imaging has seen significant improvements in resolution and image quality over the past few decades, with the aid of improved effective super resolution algorithms. The study proposes an efficient SR method based on wiener filtering via adaptive line search method. The proposed method initially employs a wiener filtering which recovers the feature of the images by inverse filtering of low-quality source images. Further, an adaptive line search method is utilized for fast convergence, in which an approximate analytical term of step size is proposed in order to prevent us from setting it empirically. In addition, a proposed line search method further modifies in order to be more adaptive under various SR circumstances. In the end, the method uses a recursive filtering in transform domain which adequately helps to retains the edges of the source images. An experimental evaluation is performed on numerous medical image data sets. In terms of both quantitative metrics and visual analysis, the proposed strategy exhibits higher performance as compares to prevailing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
printzhao发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
kentonchow应助铮铮采纳,获得10
4秒前
傻丢完成签到 ,获得积分10
6秒前
6秒前
风趣小蜜蜂完成签到 ,获得积分10
6秒前
慕青应助五音不全汪采纳,获得10
7秒前
归尘发布了新的文献求助10
9秒前
奕柯完成签到,获得积分10
10秒前
科研通AI6应助小甘采纳,获得30
10秒前
11秒前
bkagyin应助杭谷波采纳,获得10
11秒前
FashionBoy应助Jonathan采纳,获得10
11秒前
13秒前
云帆发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
孤独的以菱完成签到 ,获得积分10
17秒前
一只快乐的小比熊完成签到 ,获得积分10
17秒前
111发布了新的文献求助10
17秒前
4114发布了新的文献求助10
20秒前
wx发布了新的文献求助10
20秒前
21秒前
叮当完成签到,获得积分10
22秒前
huangfan完成签到,获得积分20
23秒前
Laraineww完成签到 ,获得积分10
24秒前
风清扬发布了新的文献求助10
24秒前
ILS发布了新的文献求助30
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
LPPQBB应助科研通管家采纳,获得50
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356