Medical-Modality Super-resolution for increased visualisation of Intracranial Tissue Details and Structural Details

计算机科学 计算机视觉 人工智能 医学影像学 图像质量 可视化 图像分辨率 领域(数学) 特征(语言学) 图像处理 模态(人机交互) 直线(几何图形) 图像(数学) 数学 语言学 哲学 纯数学 几何学
作者
Dawa Chyophel Lepcha,Bhawna Goyal
标识
DOI:10.1109/icrito51393.2021.9596440
摘要

Numerous efforts have been made to produce high-resolution images for medical imaging equipment. The procedure for image acquisition in the medical imaging field however not invariably produce high quality images that can be beneficial for clinical diagnosis. Super resolution (SR) imaging has become a common area of research in medical imaging in particular nowadays. Because of its wide practical applications, image SR has drawn great interest in the domain of image processing community. The purpose of image SR is to produce high quality images from the low-quality counterparts. The field of imaging has seen significant improvements in resolution and image quality over the past few decades, with the aid of improved effective super resolution algorithms. The study proposes an efficient SR method based on wiener filtering via adaptive line search method. The proposed method initially employs a wiener filtering which recovers the feature of the images by inverse filtering of low-quality source images. Further, an adaptive line search method is utilized for fast convergence, in which an approximate analytical term of step size is proposed in order to prevent us from setting it empirically. In addition, a proposed line search method further modifies in order to be more adaptive under various SR circumstances. In the end, the method uses a recursive filtering in transform domain which adequately helps to retains the edges of the source images. An experimental evaluation is performed on numerous medical image data sets. In terms of both quantitative metrics and visual analysis, the proposed strategy exhibits higher performance as compares to prevailing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yyyyy发布了新的文献求助10
刚刚
独角兽完成签到 ,获得积分10
5秒前
药化的彦祖完成签到,获得积分10
8秒前
Yyyyy完成签到,获得积分10
9秒前
斯文败类应助芋泥采纳,获得30
10秒前
思源应助nimo采纳,获得10
12秒前
充电宝应助清脆碧空采纳,获得10
15秒前
Orange应助zxc1064v采纳,获得10
16秒前
18秒前
dsf完成签到,获得积分10
20秒前
风中黎昕完成签到 ,获得积分10
21秒前
cllg发布了新的文献求助10
22秒前
halabouqii发布了新的文献求助10
22秒前
浮生如梦完成签到,获得积分10
23秒前
lxdfrank完成签到,获得积分10
24秒前
26秒前
FIN应助yi采纳,获得60
30秒前
SYLH应助小蓬牖采纳,获得10
32秒前
搞怪的念柏完成签到,获得积分10
34秒前
在水一方应助感动代荷采纳,获得10
37秒前
二十二给二十二的求助进行了留言
39秒前
量子星尘发布了新的文献求助10
39秒前
Owen应助潺潺流水采纳,获得10
42秒前
SSQY发布了新的文献求助10
42秒前
秋刀鱼完成签到,获得积分10
43秒前
43秒前
43秒前
zzn完成签到,获得积分10
44秒前
45秒前
jiajia发布了新的文献求助10
48秒前
朱文韬发布了新的文献求助10
48秒前
感动代荷发布了新的文献求助10
50秒前
51秒前
wshwx发布了新的文献求助10
51秒前
zzhui完成签到 ,获得积分10
54秒前
小马甲应助科研通管家采纳,获得10
55秒前
55秒前
55秒前
Owen应助科研通管家采纳,获得10
55秒前
orixero应助科研通管家采纳,获得10
55秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844