Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor

超级电容器 空位缺陷 材料科学 纳米技术 氧气 曲面(拓扑) 光电子学 化学 电容 电极 结晶学 几何学 数学 物理化学 有机化学
作者
Qinghai Ma,Fang Cui,Jiajia Zhang,Xin Qi,Tieyu Cui
出处
期刊:Applied Surface Science [Elsevier]
卷期号:578: 152001-152001 被引量:35
标识
DOI:10.1016/j.apsusc.2021.152001
摘要

Co 3 O 4 nanoribbons with abundant O vacancy acting as electrode exhibited excellent performance in energy storage. • 1D Co 3 O 4 NRs with abundant oxygen vacancy are successfully prepared. • The increased oxygen vacancy provides optimizes the electronic structure and further enhances the electrochemical performance. • R-Co 3 O 4 NRs exhibit high specific capacitance than the pristine Co 3 O 4 NRs. • ASC based on this electrode shows good rate capability and cycling performance. The development of high-efficiency metal oxide electrode materials with high reaction kinetics and excellent conductivity are a cutting-edge strategy to obtain high-performance energy storage devices. Forming oxygen vacancy on the surface of the metal oxide tune electronic structure is a feasible approach to boost the electroactive of metal oxides for supercapacitor. Herein, an effective solution reduction method is reported for tuning the electronic structure of Co 3 O 4 nanoribbons reacting with NaBH 4 to enhance the faradaic redox reaction for high electrochemical performance. The vacancy-rich defects can endow more electroactive sites and reduce the electrical resistance for the enhanced supercapacitor performance. Therefore, compared to pristine Co 3 O 4 (347.4 F g −1 ), the reduced Co 3 O 4 (R-Co 3 O 4 ) shows a high specific capacitance ( C s , 464.9 F g −1 ) and a reduced charge transfer resistance. The asymmetric supercapacitor (ASC, R-Co 3 O 4 // active carbon) exhibits an energy density of 18.6 Wh kg −1 at the power density of 400 W kg −1 and excellent cycling stability. Such a feasible approach realizes the electronic tuning by creating oxygen vacancy that provides sufficient active sites and activates the fast faradaic redox reaction with enhanced energy storage ability of redox-active electrode materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然冬灵应助果子采纳,获得100
刚刚
无尘发布了新的文献求助10
1秒前
nni完成签到,获得积分10
1秒前
2秒前
科研通AI6应助不知道呀采纳,获得10
2秒前
3秒前
滴滴完成签到,获得积分10
3秒前
xiasijian完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
章铭-111完成签到 ,获得积分10
5秒前
科研通AI6应助哈哈哈哈采纳,获得10
5秒前
6秒前
7秒前
斯文败类应助中中采纳,获得10
8秒前
七qiqi发布了新的文献求助10
8秒前
慕青应助FJLSDNMV采纳,获得10
8秒前
艺玲发布了新的文献求助10
9秒前
9秒前
鱼在哪儿完成签到,获得积分10
10秒前
慕青应助铁皮采纳,获得10
10秒前
山晴完成签到 ,获得积分10
10秒前
想喝奶茶完成签到,获得积分10
10秒前
12秒前
12秒前
黄晓杰2024完成签到 ,获得积分10
12秒前
XMY完成签到,获得积分10
13秒前
Synan发布了新的文献求助10
13秒前
13秒前
16秒前
曾经的寇发布了新的文献求助10
16秒前
谭嘻嘻完成签到,获得积分10
17秒前
鱼在哪儿发布了新的文献求助10
17秒前
科研通AI6应助mengtong采纳,获得10
18秒前
19秒前
故意的可愁完成签到 ,获得积分10
19秒前
20秒前
潦草小狗发布了新的文献求助10
21秒前
22秒前
人九完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451