Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor

超级电容器 空位缺陷 材料科学 纳米技术 氧气 曲面(拓扑) 光电子学 化学 电容 电极 结晶学 几何学 数学 物理化学 有机化学
作者
Qinghai Ma,Fang Cui,Jiajia Zhang,Xin Qi,Tieyu Cui
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:578: 152001-152001 被引量:35
标识
DOI:10.1016/j.apsusc.2021.152001
摘要

Co 3 O 4 nanoribbons with abundant O vacancy acting as electrode exhibited excellent performance in energy storage. • 1D Co 3 O 4 NRs with abundant oxygen vacancy are successfully prepared. • The increased oxygen vacancy provides optimizes the electronic structure and further enhances the electrochemical performance. • R-Co 3 O 4 NRs exhibit high specific capacitance than the pristine Co 3 O 4 NRs. • ASC based on this electrode shows good rate capability and cycling performance. The development of high-efficiency metal oxide electrode materials with high reaction kinetics and excellent conductivity are a cutting-edge strategy to obtain high-performance energy storage devices. Forming oxygen vacancy on the surface of the metal oxide tune electronic structure is a feasible approach to boost the electroactive of metal oxides for supercapacitor. Herein, an effective solution reduction method is reported for tuning the electronic structure of Co 3 O 4 nanoribbons reacting with NaBH 4 to enhance the faradaic redox reaction for high electrochemical performance. The vacancy-rich defects can endow more electroactive sites and reduce the electrical resistance for the enhanced supercapacitor performance. Therefore, compared to pristine Co 3 O 4 (347.4 F g −1 ), the reduced Co 3 O 4 (R-Co 3 O 4 ) shows a high specific capacitance ( C s , 464.9 F g −1 ) and a reduced charge transfer resistance. The asymmetric supercapacitor (ASC, R-Co 3 O 4 // active carbon) exhibits an energy density of 18.6 Wh kg −1 at the power density of 400 W kg −1 and excellent cycling stability. Such a feasible approach realizes the electronic tuning by creating oxygen vacancy that provides sufficient active sites and activates the fast faradaic redox reaction with enhanced energy storage ability of redox-active electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
agrlook完成签到,获得积分10
刚刚
吕邓宏发布了新的文献求助10
1秒前
马龙完成签到,获得积分10
2秒前
林间发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
完美世界应助wb采纳,获得10
4秒前
taozhiqi完成签到,获得积分10
5秒前
博博儿发布了新的文献求助10
5秒前
sweet_eliza完成签到 ,获得积分10
5秒前
科里斯皮尔应助默问采纳,获得10
6秒前
整齐的惮完成签到 ,获得积分10
6秒前
852应助林间采纳,获得10
6秒前
津海007发布了新的文献求助10
7秒前
33cc发布了新的文献求助10
8秒前
搞怪羞花发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助50
10秒前
Kirito应助Ankher采纳,获得200
10秒前
动听易槐完成签到,获得积分10
11秒前
11秒前
传奇3应助qingyu_Lin123采纳,获得10
12秒前
无花果应助张世豪采纳,获得10
15秒前
嘿嘿江完成签到 ,获得积分10
16秒前
17秒前
善学以致用应助吕邓宏采纳,获得30
18秒前
18秒前
DG发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
郭元强完成签到,获得积分10
22秒前
老头完成签到,获得积分10
22秒前
博博儿完成签到 ,获得积分10
23秒前
23秒前
狗东西发布了新的文献求助10
23秒前
24秒前
英姑应助静静等待采纳,获得10
24秒前
小黄鸭完成签到,获得积分10
27秒前
上官若男应助平常晓夏采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792