Enhance the debonding resistance of hydrogel by large-scale bridging

韧性 材料科学 自愈水凝胶 刚度 双层 粘附 复合材料 桥接(联网) 计算机科学 高分子化学 化学 计算机网络 生物化学
作者
Yunfeng He,Xiaodong Wan,Yujie Chen,Canhui Yang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:155: 104570-104570 被引量:24
标识
DOI:10.1016/j.jmps.2021.104570
摘要

The application of hydrogels has recently expanded markedly owning to the achievement of strong adhesion. In characterizing adhesion, a hydrogel is often subjected to 90° peel, during which the peel force increases, maximizes then drops to a plateau at steady state. The steady state peel force determines adhesion toughness. The maximum peel force determines a debonding resistance that is higher than adhesion toughness, which, however, has been largely unheeded before. This paper studies the mechanics pertaining to the maximum peel force and describes a method to enhance the debonding resistance by invoking the large-scale bridging mechanism. We achieve, by varying the bending stiffness, an increment of debonding resistance from 185 to 856 N/m for a single-network polyacrylamide hydrogel and from 486 to 2054 N/m for a double-network Ca-alginate/PAAm hydrogel on a glass substrate. The increment of debonding resistance depends on the thickness of the hydrogel and the bending stiffness of the backing. As a proof-of-concept deployment of the method, we fabricate a bilayer consisting of a passive hydrogel 2 and a responsive (PAAc/Ca(Ac)2) hydrogel 1. The PAAc/Ca(Ac)2 hydrogel is soft at 25 °C (E ~ 0.5 MPa) but stiffens dramatically at 75 °C (E ~ 100 MPa), serving as the stiff backing to elicit large-scale bridging mechanism to improve the debonding resistance by one order of magnitude. We establish a theoretical model to probe the peel behaviors based on the cohesive-zone model and solve the resultant boundary value problem numerically. Theoretical predications satisfactorily agree with experimental results. We discuss the importance of maximum peel force and the potentials of large-scale bridging mechanism in improving debonding resistance for soft materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尹沐完成签到 ,获得积分10
2秒前
3秒前
纯真玉兰完成签到 ,获得积分10
4秒前
4秒前
完美世界应助俭朴的猫咪采纳,获得10
4秒前
琉璃发布了新的文献求助10
5秒前
柳条儿完成签到,获得积分10
5秒前
6秒前
zho发布了新的文献求助10
7秒前
Crazy发布了新的文献求助10
9秒前
平生发布了新的文献求助10
9秒前
10秒前
11完成签到,获得积分10
11秒前
英俊的铭应助小鹿哐哐跑采纳,获得10
11秒前
12秒前
bbczj完成签到,获得积分20
13秒前
水澈天澜完成签到,获得积分10
13秒前
顾矜应助decade采纳,获得10
14秒前
调研昵称发布了新的文献求助30
16秒前
123完成签到,获得积分10
17秒前
SYLH应助bbczj采纳,获得10
17秒前
17秒前
tll应助Anoxia采纳,获得10
17秒前
18秒前
18秒前
21秒前
22秒前
djs发布了新的文献求助10
23秒前
陆柒捌完成签到,获得积分10
24秒前
nickx完成签到 ,获得积分10
25秒前
标致的不评应助文件撤销了驳回
25秒前
慈祥的雅寒完成签到,获得积分10
25秒前
baiabi发布了新的文献求助10
26秒前
木木发布了新的文献求助10
26秒前
29秒前
NexusExplorer应助小利采纳,获得10
35秒前
yxy999完成签到,获得积分10
35秒前
JamesPei应助大黄采纳,获得10
36秒前
一一完成签到,获得积分10
36秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985