失调
肠道菌群
微生物学
生物
蜡样芽孢杆菌
丁酸盐
炎症
免疫学
生物化学
细菌
发酵
遗传学
作者
Ruqin Lin,Danyang Li,Yangyang Xu,Mengyao Wei,Qingmei Chen,Yiqun Deng,Jikai Wen
标识
DOI:10.1016/j.envpol.2021.117814
摘要
Known as a cause of food poisoning, Bacillus cereus (B. cereus) is widespread in nature. Cereulide, the heat-stable and acid-resistant emetic toxin which is produced by some B. cereus strains, is often associated with foodborne outbreaks, and causes acute emetic toxicity at high dosage exposure. However, the toxicological effect and underlying mechanism caused by chronic low-dose cereulide exposure require to be further addressed. In the study, based on mouse model, cereulide exposure (50 μg/kg body weight) for 28 days induced intestinal inflammation, gut microbiota dysbiosis and food intake reduction. According to the cell models, low dose cereulide exposure disrupted the intestinal barrier function and caused intestinal inflammation, which were resulted from endoplasmic reticulum (ER) stress IRE1/XBP1/CHOP pathway activation to induce cell apoptosis and inflammatory cytokines production. For gut microbiota, cereulide decreased the abundances of Lactobacillus and Oscillospira. Furthermore, cereulide disordered the metabolisms of gut microbiota, which exhibited the inhibitions of butyrate and tryptophan. Interestingly, cereulide exposure also inhibited the tryptophan hydroxylase to produce the serotonin in the gut and brain, which might lead to depression-like food intake reduction. Butyrate supplementation (100 mg/kg body weight) significantly reduced intestinal inflammation and serotonin biosynthesis suppression caused by cereulide in mice. In conclusion, chronic cereulide exposure induced ER stress to cause intestinal inflammation, gut microbiota dysbiosis and serotonin biosynthesis suppression. IRE1 could be the therapeutic target and butyrate supplementation is the potential prevention strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI