氢氧化钙
材料科学
傅里叶变换红外光谱
PLGA公司
分散性
Zeta电位
差示扫描量热法
纳米颗粒
核化学
牙本质小管
药物输送
化学工程
扫描电子显微镜
化学
纳米技术
高分子化学
复合材料
工程类
物理
热力学
作者
Firas Elmsmari,José Antonio González Sánchez,Fernando Durán‐Sindreu,Roumaissa Belkadi,Marta Espina,Maria L. García,Elena Sánchez‐López
摘要
To develop a formulation in which calcium hydroxide (Ca(OH)₂) was successfully loaded into poly(lactic-co-glycolic acid) (PLGA) biodegradable nanoparticles (NPs) to be used in the field of endodontics as an intracanal medicament, including NP optimization and characterization, plus drug release profile of the NPs compared with free Ca(OH)₂. Additionally, the depth and area of penetration of the NPs inside the dentinal tubules of extracted teeth were compared with those of the free Ca(OH)₂.Ca(OH)₂ NPs were prepared using the solvent displacement method. NPs was optimized with a central composite design to obtain a final optimized formulation. The morphology of the NPs was examined under transmission electron microscopy (TEM), and characterization was carried out using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). The drug release profile of the Ca(OH)₂ NPs and free Ca(OH)₂ was evaluated up to 48 h. Finally, the depth and area of penetration inside the dentinal tubules of extracted teeth were examined for both the Ca(OH)₂ NPs and free Ca(OH)₂ using the Mann-Whitney U test to determine any significant differences.Utilizing the optimized formulation, the Ca(OH)₂ NPs had an average size below 200 nm and polydispersity index lower than 0.2, along with a highly negative zeta potential and suitable entrapment efficiency percentage. The spherical morphology of the Ca(OH)₂ NPs was confirmed using TEM. The results of the XRD, FTIR and DSC revealed no interactions and confirmed that the drug was encapsulated inside the NPs. The drug release profile of the Ca(OH)₂ NPs exhibited a prolonged steady release that remained stable up to 48 h with higher concentrations than the free Ca(OH)₂. After examination by confocal laser scanning microscopy, Ca(OH)₂ NPs had a significantly greater depth and area of penetration inside dentinal tubules compared with the free drug.Ca(OH)₂-loaded PLGA NPs were successfully optimized and characterized. The NPs exhibited a prolonged drug release profile and superior penetration inside dentinal tubules of extracted teeth when compared to Ca(OH)2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI