Combined Metabolomics with Transcriptomics Reveals Important Serum Biomarkers Correlated with Lung Cancer Proliferation through a Calcium Signaling Pathway

代谢组学 肺癌 转录组 通路分析 生物标志物 生物 油酸 诊断生物标志物 蛋白质组学 癌症 生物标志物发现 计算生物学 癌症研究 生物化学 医学 生物信息学 肿瘤科 内科学 基因表达 基因
作者
Zheng Yuan,Zhuoru He,Yu Kong,Xinjie Huang,Wei Zhu,Zhongqiu Liu,Lingzhi Gong
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:20 (7): 3444-3454 被引量:17
标识
DOI:10.1021/acs.jproteome.0c01019
摘要

Lung cancer (LC) is one of the most malignant cancers in the world, but currently, it lacks effective noninvasive biomarkers to assist its early diagnosis. Our study aims to discover potential serum diagnostic biomarkers for LC. In our study, untargeted serum metabolomics of a discovery cohort and targeted analysis of a test cohort were performed based on gas chromatography–mass spectrometry. Both univariate and multivariate statistical analyses were employed to screen for differential metabolites between LC and healthy control (HC), followed by the selection of candidate biomarkers through multiple algorithms. The results showed that 15 metabolites were significantly dysregulated between LC and HC, and a panel, comprising cholesterol, oleic acid, myo-inositol, 2-hydroxybutyric acid, and 4-hydroxybutyric acid, was demonstrated to have excellent differentiating capability for LC based on multiple classification modelings. In addition, the molecular interaction analysis combined with transcriptomics revealed a close correlation between the candidate biomarkers and LC proliferation via a Ca2+ signaling pathway. Our study discovered that cholesterol, oleic acid, myo-inositol, 2-hydroxybutyric acid, and 4-hydroxybutyric acid in combination could be a promising diagnostic biomarker for LC, and most importantly, our results will shed some light on the pathophysiological mechanism underlying LC to understand it deeply. The data that support the findings of this study are openly available in MetaboLights at https://www.ebi.ac.uk/metabolights/, reference number MTBLS1517.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zuducyow完成签到,获得积分10
刚刚
浮游应助酷酷电脑采纳,获得10
1秒前
浮游应助研友_Z3NGvn采纳,获得10
1秒前
gkads举报量子星尘求助涉嫌违规
1秒前
罗美美发布了新的文献求助10
2秒前
大力水手完成签到,获得积分10
3秒前
浮游应助余裕采纳,获得10
6秒前
充电宝应助王博采纳,获得10
6秒前
卢不评发布了新的文献求助10
6秒前
大气亦巧完成签到,获得积分10
6秒前
流年完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助坚强的曼雁采纳,获得10
8秒前
yu完成签到,获得积分10
8秒前
简时完成签到,获得积分10
9秒前
平常的行云完成签到,获得积分10
9秒前
酷波er应助醉熏的海亦采纳,获得10
9秒前
11秒前
JayWu完成签到,获得积分10
11秒前
eco完成签到,获得积分10
13秒前
Jo关闭了Jo文献求助
14秒前
卢不评完成签到,获得积分10
14秒前
斯文败类应助wang采纳,获得10
15秒前
qiting发布了新的文献求助10
16秒前
17秒前
gkads举报量子星尘求助涉嫌违规
17秒前
大模型应助111111采纳,获得10
18秒前
18秒前
黑白灰完成签到 ,获得积分20
19秒前
满当当完成签到 ,获得积分10
20秒前
21秒前
ccc发布了新的文献求助10
21秒前
22秒前
cmdan完成签到,获得积分10
23秒前
23秒前
加点研完成签到,获得积分10
23秒前
gq完成签到 ,获得积分10
24秒前
钱来完成签到,获得积分10
24秒前
25秒前
天天快乐应助大力世界采纳,获得10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350453
求助须知:如何正确求助?哪些是违规求助? 4483871
关于积分的说明 13957274
捐赠科研通 4383203
什么是DOI,文献DOI怎么找? 2408171
邀请新用户注册赠送积分活动 1400835
关于科研通互助平台的介绍 1374262