Structure development of carbon-based solar-driven water evaporation systems

光热治疗 纳米技术 蒸发 工艺工程 吸收(声学) 材料科学 环境科学 计算机科学 工程物理 碳纤维 气象学 工程类 复合数 物理 复合材料
作者
He Wen,Lei Zhou,Miao Wang,Yang Cao,Xuemei Chen,Xu Hou
出处
期刊:Science Bulletin [Elsevier]
卷期号:66 (14): 1472-1483 被引量:173
标识
DOI:10.1016/j.scib.2021.02.014
摘要

Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions, which will become a restrictive factor for human development and production. In recent years, solar-driven water evaporation (SDWE) systems have attracted increasing attention for their specialty in no consume conventional energy, pollution-free, and the high purity of fresh water. In particular, carbon-based photothermal conversion materials are preferred light-absorbing material for SDWE systems because of their wide range of spectrum absorption and high photothermal conversion efficiency based on super-conjugate effect. Until now, many carbon-based SDWE systems have been reported, and various structures emerged and were designed to enhance light absorption, optimize heat management, and improve the efficient water transport path. In this review, we attempt to give a comprehensive summary and discussions of structure progress of the carbon-based SDWE systems and their working mechanisms, including carbon nanoparticles systems, single-layer photothermal membrane systems, bi-layer structural photothermal systems, porous carbon-based materials systems, and three dimensional (3D) systems. In these systems, the latest 3D systems can expand the light path by allowing light to be reflected multiple times in the microcavity to increase the light absorption rate, and its large heat exchange area can prompt more water to evaporate, which makes them the promising application foreground. We hope our review can spark the probing of underlying principles and inspiring design strategies of these carbon-based SDWE systems, and further guide device optimizations, eventually promoting in extensive practical applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Billy应助Lam采纳,获得30
3秒前
纯真寄文完成签到 ,获得积分10
5秒前
想水SCI完成签到,获得积分10
7秒前
physicalproblem应助橙木木采纳,获得10
7秒前
独立江湖女完成签到 ,获得积分10
8秒前
hanshu完成签到 ,获得积分10
8秒前
8秒前
9秒前
hyman1218完成签到 ,获得积分10
10秒前
ding应助present采纳,获得10
11秒前
用行舍藏完成签到,获得积分10
13秒前
13秒前
英俊的铭应助lirongcas采纳,获得10
14秒前
ling完成签到,获得积分20
15秒前
木子杨发布了新的文献求助10
15秒前
17秒前
17秒前
一切随风完成签到,获得积分10
17秒前
日出东方小磊哥完成签到 ,获得积分10
21秒前
随波逐流发布了新的文献求助10
22秒前
李健的小迷弟应助小田采纳,获得10
22秒前
22秒前
慧喆完成签到 ,获得积分10
22秒前
22秒前
英姑应助miraitowa采纳,获得30
23秒前
子车定帮完成签到,获得积分10
24秒前
小宝完成签到,获得积分10
25秒前
Twistti发布了新的文献求助10
26秒前
沙脑完成签到 ,获得积分10
26秒前
26秒前
present发布了新的文献求助10
26秒前
无辜凝天完成签到,获得积分10
29秒前
29秒前
满天星完成签到,获得积分10
32秒前
lirongcas发布了新的文献求助10
33秒前
小橘完成签到,获得积分10
33秒前
34秒前
所所应助科研通管家采纳,获得10
34秒前
Ava应助科研通管家采纳,获得10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299938
求助须知:如何正确求助?哪些是违规求助? 2934780
关于积分的说明 8470445
捐赠科研通 2608342
什么是DOI,文献DOI怎么找? 1424154
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645601