Align Deep Features for Oriented Object Detection

计算机科学 人工智能 模式识别(心理学) 目标检测 计算机视觉 遥感 地质学
作者
Jiaming Han,Jian Ding,Jie Li,Gui-Song Xia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:696
标识
DOI:10.1109/tgrs.2021.3062048
摘要

The past decade has witnessed significant progress on detecting objects in aerial images that are often distributed with large-scale variations and arbitrary orientations. However, most of existing methods rely on heuristically defined anchors with different scales, angles, and aspect ratios, and usually suffer from severe misalignment between anchor boxes (ABs) and axis-aligned convolutional features, which lead to the common inconsistency between the classification score and localization accuracy. To address this issue, we propose a single-shot alignment network (S 2 A-Net) consisting of two modules: a feature alignment module (FAM) and an oriented detection module (ODM). The FAM can generate high-quality anchors with an anchor refinement network and adaptively align the convolutional features according to the ABs with a novel alignment convolution. The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy. Besides, we further explore the approach to detect objects in large-size images, which leads to a better trade-off between speed and accuracy. Extensive experiments demonstrate that our method can achieve the state-of-the-art performance on two commonly used aerial objects' data sets (i.e., DOTA and HRSC2016) while keeping high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
潇洒的诗桃完成签到,获得积分0
刚刚
姜水完成签到,获得积分10
刚刚
tyZhang完成签到,获得积分10
刚刚
卖药丸的兔子完成签到 ,获得积分10
1秒前
cryjslong完成签到,获得积分10
2秒前
七星嘿咻完成签到,获得积分0
2秒前
量子星尘发布了新的文献求助10
3秒前
wuwwww完成签到,获得积分20
3秒前
HMZ完成签到,获得积分10
5秒前
科研通AI6.1应助进进采纳,获得10
5秒前
5秒前
张老板发布了新的文献求助10
5秒前
司马绮山完成签到,获得积分10
5秒前
风吹草动玉米粒完成签到,获得积分10
6秒前
石头完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
星河鹭起完成签到,获得积分10
7秒前
7秒前
7秒前
zhangchen123完成签到,获得积分10
7秒前
背后的白亦完成签到,获得积分10
8秒前
进进完成签到,获得积分0
8秒前
Jasper应助WK采纳,获得10
9秒前
Zhi发布了新的文献求助10
9秒前
PJT-8450发布了新的文献求助10
9秒前
songnvshi完成签到 ,获得积分10
9秒前
10秒前
天天快乐应助wuwwww采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5817082
求助须知:如何正确求助?哪些是违规求助? 5945082
关于积分的说明 15546233
捐赠科研通 4939264
什么是DOI,文献DOI怎么找? 2660442
邀请新用户注册赠送积分活动 1606714
关于科研通互助平台的介绍 1561625