Align Deep Features for Oriented Object Detection

计算机科学 人工智能 模式识别(心理学) 目标检测 计算机视觉 遥感 地质学
作者
Jiaming Han,Jian Ding,Jie Li,Gui-Song Xia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:586
标识
DOI:10.1109/tgrs.2021.3062048
摘要

The past decade has witnessed significant progress on detecting objects in aerial images that are often distributed with large-scale variations and arbitrary orientations. However, most of existing methods rely on heuristically defined anchors with different scales, angles, and aspect ratios, and usually suffer from severe misalignment between anchor boxes (ABs) and axis-aligned convolutional features, which lead to the common inconsistency between the classification score and localization accuracy. To address this issue, we propose a single-shot alignment network (S 2 A-Net) consisting of two modules: a feature alignment module (FAM) and an oriented detection module (ODM). The FAM can generate high-quality anchors with an anchor refinement network and adaptively align the convolutional features according to the ABs with a novel alignment convolution. The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy. Besides, we further explore the approach to detect objects in large-size images, which leads to a better trade-off between speed and accuracy. Extensive experiments demonstrate that our method can achieve the state-of-the-art performance on two commonly used aerial objects' data sets (i.e., DOTA and HRSC2016) while keeping high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
39完成签到,获得积分10
1秒前
11发布了新的文献求助10
3秒前
Ron完成签到,获得积分10
3秒前
动听的筝完成签到,获得积分10
3秒前
4秒前
狗妹那塞完成签到,获得积分10
5秒前
6秒前
隐形的迎梅完成签到,获得积分10
7秒前
所所应助小鹿采纳,获得10
7秒前
Xltox完成签到,获得积分10
9秒前
很蓝的啦完成签到,获得积分20
10秒前
12秒前
12秒前
不会取名字完成签到,获得积分10
14秒前
FashionBoy应助星星采纳,获得20
15秒前
11完成签到,获得积分10
15秒前
很蓝的啦发布了新的文献求助30
16秒前
NexusExplorer应助意而往南飞采纳,获得10
16秒前
张文静发布了新的文献求助10
17秒前
柳浪发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
能干凡松发布了新的文献求助20
23秒前
adobe完成签到,获得积分10
23秒前
hu发布了新的文献求助10
23秒前
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
25秒前
Akim应助科研通管家采纳,获得20
25秒前
无花果应助科研通管家采纳,获得10
25秒前
子车茗应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
yy发布了新的文献求助10
25秒前
汉堡包应助科研通管家采纳,获得10
26秒前
26秒前
打打应助科研通管家采纳,获得30
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264696
求助须知:如何正确求助?哪些是违规求助? 2904692
关于积分的说明 8331249
捐赠科研通 2575017
什么是DOI,文献DOI怎么找? 1399626
科研通“疑难数据库(出版商)”最低求助积分说明 654521
邀请新用户注册赠送积分活动 633221