计算机科学
带宽(计算)
内存带宽
德拉姆
利用
嵌入式系统
炸薯条
计算机体系结构
计算机硬件
计算机网络
电信
计算机安全
作者
Young-Cheon Kwon,Suk Han Lee,Jae‐Hoon Lee,Sanghyuk Kwon,Je Min Ryu,Jong-Pil Son,O Seongil,Hak-soo Yu,Haesuk Lee,Soo Young Kim,Youngmin Cho,Jin Guk Kim,Jongyoon Choi,Hyunsung Shin,Jin Kim,Bengseng Phuah,HyoungMin Kim,Myeong Jun Song,Ahn Choi,Daeho Kim
标识
DOI:10.1109/isscc42613.2021.9365862
摘要
In recent years, artificial intelligence (AI) technology has proliferated rapidly and widely into application areas such as speech recognition, health care, and autonomous driving. To increase the capabilities of AI more powerful systems are needed to process a larger amount of data. This requirement has made domain-specific accelerators, such as GPUs and TPUs, popular; as they can provide orders of magnitude higher performance than state-of-the-art CPUs. However, these accelerators can only operate at their peak performance when they get the necessary data from memory as quickly as it is processed: requiring off-chip memory with a high bandwidth and a large capacity [1]. HBM has thus far met the bandwidth and capacity requirement [2-6], but recent AI technologies such as recurrent neural networks require an even higher bandwidth than HBM [7-8]. While a further increase in off-chip bandwidth can be accomplished by various techniques, it is often limited by power constraints at the chip or system level [9]. Hence, it is essential to decrease demand for off-chip bandwidth with unconventional architectures: such as processing-in-memory. In this paper, we present function-Inmemory DRAM (FIMDRAM) that integrates a 16-wide single-instruction multiple-data engine within the memory banks and that exploits bank-level parallelism to provide 4× higher processing bandwidth than an off-chip memory solution. Second, we show techniques that do not require any modification to conventional memory controllers and their command protocols, which make FIMDRAM more practical for quick industry adoption. Finally, we conclude this paper with circuitand system-level evaluations of our fabricated FIMDRAM.
科研通智能强力驱动
Strongly Powered by AbleSci AI